Digital Library NAES of Ukraine

Chapter І. Comparative analysis of artificial intelligence models

Абрамов, Сергій (orcid.org/0000-0003-0675-4850), Кравченко, Сергій (orcid.org/0000-0002-1923-5702), Синиціна, Юлія (orcid.org/0000-0002-6447-821X) and Титаренко, Олексій (orcid.org/0000-0002-3271-9402) (2025) Chapter І. Comparative analysis of artificial intelligence models . ФОП Ямчинський О.В., м. Київ, Україна, pp. 6-25. ISBN 978-617-8830-09-0

[thumbnail of РОЗДІЛ І.pdf] Text
РОЗДІЛ І.pdf

Download (1MB)

Abstract

The current conditions of digital era's rapid development require an urgent need for a methodological approach to compare neural network models. This work analyzes the existing methods of neural network models comparative analysis, develops a generalized methodology and algorithm of comparative analysis, identifies key characteristics and features of artificial intelligence models, substantiates the criteria for assessing it's effectiveness. It was found that for a full-fledged comparative analysis of artificial intelligence models it is necessary to combine theoretical content analysis, SWOT analysis and experimental analysis (Benchmarking). This will allow to comprehensively evaluate AI models and to create recommendations for choosing optimal approaches for various areas of their application.

Item Type: Book
Additional Information: Абрамов Сергій, Кравченко Сергій, Синиціна Юлія, Титаренко Олексій. Розділ І. Порівняльний аналіз моделей штучного інтелекту. Штучний інтелект у науці : монографія / [авт. колектив]; за ред. Яцишина Андрія та Яцишин Анни. – Київ: ФОП Ямчинський О.В., 2025. – С. 6-25. ISBN 978-617-8830-09-0
Keywords: artificial intelligence, SWOT analysis, case study, ChatGPT, Gemini
Subjects: Science and knowledge. Organization. Computer science. Information. Documentation. Librarianship. Institutions. Publications > 00 Prolegomena. Fundamentals of knowledge and culture. Propaedeutics > 004 Computer science and technology. Computing. Data processing > 004.9 Application-oriented computer-based techniques
Divisions: Institute for Digitalisation of Education > Generic resouse
Depositing User: д.пед.н. Анна Яцишин
Date Deposited: 22 Jan 2026 11:12
Last Modified: 02 Feb 2026 12:24
URI: https://lib.iitta.gov.ua/id/eprint/748209

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item