Digital Library NAES of Ukraine

Construction of robust models for predicting cognitive activity of operator-type

- Буров, О.Ю. (orcid.org/0000-0003-0733-1120) (2019) Construction of robust models for predicting cognitive activity of operator-type In: ІV Всеукраїнська науково-практична конференція "Сучасні інформаційні технології в освіті та науці" . ЖДУ, м. Житомир, Україна. (In Press)

[thumbnail of Буров_ПОБУДОВА РОБАСТНИХ МОДЕЛЕЙ ДЛЯ ПРОГНОЗУВАННЯ.pdf] Text
Буров_ПОБУДОВА РОБАСТНИХ МОДЕЛЕЙ ДЛЯ ПРОГНОЗУВАННЯ.pdf - Published Version

Download (230kB)

Abstract

To build predictive models of cognitive performance, it is advisable to use multiple regression models that include a limited number of predictors instead of using all psychological and medical indicators that are measured at the stage of professional selection in traditional approaches.

Item Type: Book Section
Keywords: Robust models, operator type, prediction, cognitive activity
Subjects: Science and knowledge. Organization. Computer science. Information. Documentation. Librarianship. Institutions. Publications > 00 Prolegomena. Fundamentals of knowledge and culture. Propaedeutics > 004 Computer science and technology. Computing. Data processing > 004.9 ІКТ ( Application-oriented computer-based techniques ) > 004.94 Simulation
Science and knowledge. Organization. Computer science. Information. Documentation. Librarianship. Institutions. Publications > 5 Мathematics. natural sciences > 51 Mathematics
Science and knowledge. Organization. Computer science. Information. Documentation. Librarianship. Institutions. Publications > 6 Applied Sciences. Medicine. Technology > 68 Industries, crafts and trades for finished or assembled articles
Divisions: Institute for Digitalisation of Education > Department of Technologies of Open Learning Environment
Depositing User: с.д/п.н.с. Oleksandr Burov
Date Deposited: 23 Jan 2020 15:54
Last Modified: 23 Jan 2020 15:54
URI: https://lib.iitta.gov.ua/id/eprint/718702

Downloads

Downloads per month over past year

Actions (login required)

View Item View Item