165

Romanyuk Oleksandr, Zavalniuk Yevhen, Bobko Oleksii, Stakhov Oleksii, Romanyuk Sergey. Chapter XIII.
Artificial intelligence usage for the formation of graphic images. [lImyunutl inmenexm y nayyi : Monoz2pagis

/ [aem. konexmus]; 3a ped. Ayuwuna Anopis ma Ayuwun Annu. — Kuis: @OII Amuuncoxuti O.B., 2025. —
C. 165-181. ISBN 978-617-8830-09-0

CHAPTER XIII. ARTIFICIAL INTELLIGENCE USAGE FOR THE

FORMATION OF GRAPHIC IMAGES
DOI: 10.33407/lib.NAES.id/748280

Romanyuk Oleksandr![0000-00022245-3364] 7 ayalnjuk Yevhen![0009-0005-1202-4653),

Bobko Oleksii[0009-0000-1753-279X] Ggakhov Oleksii'[0000-0002-4901-3211]
Romanyuk SergeyZ[0000-0002-6400-0021]
'Vinnytsia National Technical University, Vinnytsia, Ukraine
?Odesa National Polytechnic University, Odesa, Ukraine
rom8591@gmail.com

Abstract. In the work, it is analyzed the main aspects of artificial intelligence
usage for the formation of graphic images. The main stages of the graphics pipeline for
image formation and the prospects of applying artificial intelligence for their
optimization are considered. Generative adversarial networks, diffusion models,
transformers, ensemble learning methods, which are used for image generation, are
characterized. Direct image generation as the alternative to the image formation using
graphics editing tools is examined. The ways of optimizing the stages of 3D-model
formation, texture generation, texture mapping, 3D-model’s surface shading and
formed image post-processing are analyzed in detail.

Keywords: rendering, generative adversarial networks, transformers, diffusion

model, graphics pipeline.

Introduction. Current state of computer graphics technologies development is
characterized by a constant increase of requirements to the realism and productivity of
image formation. Formation of highly realistic images involves considering the
geometric features of scene’s object surfaces, optical properties of materials, key
aspects of light interaction with the surface. At the same time, in the systems of virtual
reality and interactive computer games it is necessary to provide the formation of

images in the real-time mode. The development of artificial intelligence (Al)
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algorithms has significantly expanded the list of main approaches to image formation
and processing. Therefore, Al usage gives the possibility to provide a highly realistic
and highly productive image creation at the same time. As a result, the analysis of
applying Al for direct image generation and optimization of traditional image
formation techniques is actual.

Literature Analysis and Problem Statement

Formation of graphic images [1] is a complex task, which includes a few key
stages and uses different technologies for creating, editing, and visualizing the graphic
content.

The process begins with the modelling [2], where artists create 3D-models of
objects, using special software tools, precisely determining the forms, sizes and
proportions of models. The next is texturing [3], where textures are mapped into the
surfaces of 3D-models in order to provide them with the realistic appearances. After
texturing, the lighting modelling stage begins [4], where the respective shadows and
glares on objects are reproduced based on the normalized vectors [5,6] to light source
and the viewer. Rendering [7] is the process, where all models, textures and lighting
parameters are combined for the creation of final image. As a result, the color intensity
is calculated for every point of image. Consequently, rendering can require significant
computational resources of computer. There are different techniques of rendering,
including rasterization and ray tracing. Rasterization [2] is fast and effective, but cannot
provide such level of realism as ray tracing [2], which requires much more
computational resources, while providing very realistic images, reproducing complex
effects of lighting and shadowing. The process ends with a post-processing [8], which
involves color correction, adding visual effects and other changes, which improve the
general appearance of the final image.

The listed stages together create the graphics pipeline for image formation (Fig.
1) [9]. The sequence of graphics pipeline stages is general and may vary slightly in
special cases.

At the same time, the fast development of Al gives the possibility of optimal

object’s polygonal model formation, generation of photorealistic textures,
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determination of appropriate lighting model at the respective stages of graphics
pipeline. Additionally, the direct generation of a highly realistic image based on the

text description or three-dimensional object’s model is possible.
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Fig. 1. Main stages of general graphics pipeline [9]

Therefore, Al tools give the possibility to effectively augment the current image
formation methods. Hence, conducting the analysis of Al usage for image formation is
actual.

Research Results

Main Neural Architectures and Methods for Image Generation

In the process of generating graphic images using Al, various neural network
architectures are used, each of which has its own characteristics, advantages, and scope
of application.

One of the most common directions is the use of Generative Adversarial Networks
(GAN) [10]. This direction involves the interaction of two neural networks - a
generator and a discriminator. The generator creates new images based on random
input data or feature vectors, and the discriminator tries to distinguish the generated

image from the real one. During the training process, both networks are improving, and
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eventually the generator begins to create images so realistic that the discriminator
cannot determine whether they are artificial. Conditional GANs (cGAN) [10] give the
possibility to set additional conditions for generation. For example, the user can specify
the category of the image. In particular, the Pix2Pix model [11] learns the
transformation of an image from one type to another. For example, a satellite photo of
a landscape is transformed into a map of the area. At the same time, paired samples of
the original and transformed images are necessary during its training. CycleGAN [10],
unlike cGAN, does not require using pairs of original and transformed images. The
CycleGAN architecture involves the use of two generators and two discriminators. The
first generator generates a transformed image based on the original, the second
generator reconstructs the original based on the transformed image. As a result, cyclic
consistency is ensured. A transformed image is generated in such way that original
image can be reconstructed as accurately as possible. Progressive GAN (PGGAN) [10]
lies in gradually increasing the sizes of the generator and discriminator during training.
This provides a gradual formation of the image from low to high resolution.
Wasserstein GAN (WGAN) [10] involves the use of an alternative error function
Wasserstein distance, which provides more stable training on the data.

Another type of generative neural network are autoencoders [10], which are used
for image compression and restoration. They consist of two parts: an encoder that
converts an image into a compressed feature vector, and a decoder that uses this vector
to reproduce or generate a new image. Unlike classical autoencoders, Variational
Autoencoders (VAEs) work with probability distributions, which allow the model to
learn the creation of new images that are variations of those already seen. As a rule,
GANSs provide clearer images compared to autoencoders.

Another important type of generative neural networks are diffusion models [12],
which have become popular thanks to systems such as DALL-E 2, Stable Diffusion,
and Midjourney [12]. These models work on the principle of gradual “cleaning” of
noise. First, the model takes a random noisy array of pixels, and then, after hundreds
or thousands of iterations, using the back diffusion process, transforms it into an

ordered image that corresponds to a given text description. This approach ensures high
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quality and detail of the generated images. Compared to GANSs, diffusion models are
characterized by more stable training, but less productive image generation.

Another important method is the use of transformers [13], which were originally
developed for natural language processing, but later adapted for visual tasks. They
provide the possibility to analyze a text query in a complex context, taking into account
the semantic connections between words, emotional coloring and style. For example,
the CLIP (Contrastive Language—Image Pretraining) model [14], developed by
OpenAl, gives the possibility to compare text descriptions with visual images, find
correspondences and form semantic connections. Transformers involve the use of
attention mechanisms [13], which allow the model to "understand" which elements of
the text description are the most important, and accordingly focus attention on
generating key details of the image.

The method of image generation through combining several layers of different
levels of abstraction — the so-called Hierarchical Generative Models — is gaining
popularity. Image creation occurs in stages: first, the general structure of the scene is
formed, then the main color arrays are filled, and only after that, small details, shadows,
textures, and realistic effects are added.

In addition, there are ensemble methods that combine several models
simultaneously [15]. In such systems, the result is generated by several different
models, after which the best option is selected or several partial results are combined
into a single composition. In particular, Y. Wang et al. [15] distinguish three directions
for training GAN ensembles. Standard ensemble (eGANs) [15] lie in that the several
GANSs are trained on a dataset with random initial parameters. When generating an
image, one of the models is randomly selected. Self-ensemble GANs (seGANSs) [15]
lie in that the each GAN in the ensemble is characterized by the same set of initial
parameters and differs in the number of training iterations. Cascade GANs (cGANs)
[15] are characterized by the use of a sequence of GANs. Each GAN improves the
visualization results of the previous model, and the transition to the next GAN is carried

out if the discriminator accuracy exceeds a certain threshold value.
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One of the most promising and relatively new directions is the use of hybrid models
that combine the capabilities of language and image processing in a single architectural
space. They are able to analyze text queries more deeply, taking into account not only
keywords, but also context, logic, stylistic features and even the hidden mood of the
description. An example of a hybrid model is the combination of the CLIP model, which
provides the analysis of correspondence between text and image, and VQGAN for image
generation [16]. VQGAN (Vector Quantised GAN) is a modification of GAN, which lies
in using a special codebook to improve the quality of the generated image.

Another promising direction is the use of reinforcement learning, when the model
learns to improve results not only based on statistical correspondences, but also through
"rewards" for high-quality images.

Key Aspects of Training Model for Image Generation

An important aspect of the process of generating graphical images using Al is
training the model. To achieve high-quality generation, neural networks are trained on
huge arrays of images accompanied by descriptions, tags or metadata. The model
gradually learns to recognize patterns, structures, color schemes, compositional
techniques and contextual connections between words and visual elements. For example,
it remembers that the phrase “blue sky” is most often associated with a background, and
“person in a coat” with a certain type of clothing. The more data the model receives, the
more accurately it can generate relevant images. However, training on such arrays also
creates the risk of accidentally reproducing fragments of existing images.

In addition, modern systems often use the Transfer Learning method - retraining
already trained models on new, more specific data sets. This gives the possibility to
adapt models to specific styles and genres. As a rule, transfer learning is used in cases
of limited data, high complexity of training a model from scratch. An important
innovation is LoRA (Low-Rank Adaptation) - a method of retraining models with
minimal computing resources. The method lies in "freezing" the training parameters of

a large model and training the parameters of additional small-sized matrices.
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Stages of the Direct Image Generation Process

The process of generating graphic images using Al consists of several sequential
stages that depend on the type of model used, but the general logic of such systems
remains the same.

It all starts with entering a text description or other type of query — it can be a
key phrase, a set of tags, an image, or a combination of them. Such a text query is called
a “prompt” and is the basis for further work. The user formulates his vision of the
desired result: for example, “a futuristic city at night, with neon lighting, in a cyberpunk
style.”

The Al-system then interprets this query using a pre-trained transformer model
that converts the text into a numerical representation—a feature space vector. This
vector contains semantic information about objects, their relationships, styles, colors,
spatial location, and more.

The next stage 1s the image generation itself. In the case of GAN [10], a special
generator creates an initial image based on feature vectors, after which the
discriminator evaluates its realism. Both networks work together until the generator
learns to create the most plausible images. In diffusion models [12], the process begins
with random noise — a matrix of random pixels, which is cleaned up in several hundred
or thousand iterations and takes the form of an image according to the content of the
query. The model constantly compares the intermediate results with the semantics of
the entered description, adjusting the shape, color, shadows, proportions of objects and
other visual characteristics. Fig. 2 shows an example of an image generated using the
DALLE 3 model.

Once the image is generated, the user has the opportunity to modify it. In particular,
the Neural Style Transfer method can be used to change the style. The neural network
extracts contour or structural information from one image and style information from
another, and then combines them into a new visual object. For example, images are

transformed into "paintings" in the style of Van Gogh, Picasso, or modern artists.



Fig. 2. Example of generated image using DALLE 3 model

From a technical perspective, the entire image generation process is implemented on
powerful graphics processing units (GPUs), which process large amounts of data and
perform parallel calculations necessary to quickly generate high-quality images. The result
1s output as a finished digital image in JPEG, PNG or even PSD format.

Applying Artificial Intelligence at Different Stages of Graphics Pipeline

Let's analyze the application of Al at the following stages of the graphics pipeline [9]:
polygonal model formation, texturing, shading, and post-processing.

Using Al to generate polygonal models is one of the promising technologies in 3D-
graphics. A polygonal model is a 3D-model built from a large number of polygons that
describe the surface of an object. Typically, creating such models requires complex manual
labor and a large amount of time, but applying Al significantly optimizes this process.

One of the main directions of appying Al in creation of polygonal models is generation
of three-dimensional objects on the basis of two-dimensional images. For example, Al
models built on the basis of convolutional neural networks (CNN) can restore depth of a
scene using so-called depth maps, which are then used to build a polygonal mesh. Another
promising method is to use generative models to form 3D models based on text description.
For example, DreamFusion [17] from Google allows to create detailed 3D model on the
basis of given text. In Fig. 3 examples of DreamFusion generated 3D models based on text

description are given.
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Fig. 3. Examples of generated 3D-models using DreamFusion [17]

Another direction is automated retopology [18]. This is the process of transforming
an irregular polygonal model into an ordered, optimized model with fewer polygons [19]
using Al or specialized algorithms, while preserving the object's shape and visual quality.
Retopology is an important step in 3D-modeling, especially when the original model was
created manually or generated by scanning or other methods, which often produce a large
number of triangles without a logical structure. Such "dirty" geometry is not suitable for
animation, real-time rendering, or integration into game engines. Modern automated
retopology tools, such as ZRemesher in ZBrush, Quad Remesher, Instant Meshes,
TopoGun, as well as individual Al solutions built into Blender, Houdini, and Maya, use a
variety of algorithms: from heuristic and analytical to neural networks. The user can set
parameters such as density limits and level of detail. More advanced algorithms are able
to recognize anatomical features or logical parts of an object and independently determine
where a higher mesh density is needed (for example, in places of animation), and where it
can be reduced without loss of quality. In particular, scientists from the University of
Berkeley (USA) are developing the Retopokill software tool [ 18] for optimizing polygonal
models in Blender based on Al

Let’s consider a conceptual model of automated Al retopology of object models.
First, the Al analyzes the surface of the object, identifying the main features of the shape:
bends, protrusions, depressions. The system builds a surface curvature map, which
determines where more polygons need to be placed to maintain accuracy, and where the
mesh density can be reduced. The second stage is to determine the edge flow and guide
curves of the model. The neural network analyzes the logic of building the topology: for

example, how to place polygons around the eyes, mouth, joints, folds of the object. The
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third stage is building the primary mesh. At this stage, the system forms a base mesh of
regular quads or triangles. The algorithm automatically adjusts the sizes and locations of
polygons to preserve the general contour of the surface, while minimizing the number of
polygons and preventing the appearance of excess geometric elements. The next stage is
to optimize the newly created topology. The algorithm corrects the placement of vertices,
eliminates topological artifacts (for example, excess vertices). The mesh density can be
corrected - for example, higher density in areas of the face where there will be deformation
during animation, and lower in flat areas, such as the back. After that, attributes from the
initial model are transferred - such as normal maps, textures. The final stage is the output
of the final retopologized model, ready for export. The user is given the opportunity to
compare the initial and optimized models, as well as manually make adjustments if
necessary. In general, the direction of automated retopology is characterized by a
significant amount of research, but the number of ready-made solutions in the form of
plugins is insignificant. This is explained by the instability of the results of Al optimization
of the polygonal model, imperfect training data sets.

Al can automate the texturing process by using large datasets to generate textures
from existing images, which significantly speeds up and optimizes the workflow. The
Texture Synthesis method [20] allows using the VGG-19 (CNN) model to generate a
texture that matches a real photo. To determine the accuracy of texture generation, the
Gram matrices for the reference and generated images are compared. Technologies such
as GAN are used to increase the resolution of textures. In addition, Al can detect and
automatically correct visual defects in textures.

The shading stage involves determining the color intensity of each pixel in the image.
In computer graphics, there are a large number of shading methods [1], such as Gouraud
shading, Phong shading, Flat shading, PBR shading, and others, which differ in the level
of realism, performance, and stylization. The choice of a shading method usually depends
on the context of the task: the scene, the material, the target graphics style (realistic or
stylized), technical constraints, and the target device (game console, mobile device, render
farm). Al can be effectively used to automatically select the shading method, which is

especially useful in interactive rendering systems.
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There are four directions of using Al to select a shading method for scene. The first
method is to classify the scene by type. The neural network analyzes the input parameters
(number of objects in the frame, presence of dynamic lighting, type of materials, type of
game or application) and classifies it as corresponding to a certain style: realistic, stylized,
technical, artistic, etc. Based on the analysis, the Al recommends the optimal shading
method: for realistic scenes - PBR or Phong shading, for stylized - Toon shading, for
prototype scenes or scenes of technical renderers - Flat shading. The second direction is
the analysis of materials and lighting. The Al system can study the materials of the scene,
their characteristics (surface shininess, roughness), the number of light and shadow
sources, and on this basis predict which shading method will best convey the visual
properties of the material. For example, if many shiny surfaces are detected, Al can
recommend using Phong shading, if matte materials prevail, Gouraud shading, and in the
case of complex materials (hair, fabric) - PBR shading. The third direction is performance
optimization. It is possible to build a system that analyzes device resources, the number of
objects in the scene, the frame rate and dynamically changes the shading method in real
time. For example, on weak devices, it automatically turns on Flat shading or Gouraud,
and on powerful devices, PBR with HDR lighting. The fourth option is to use generative
models that, based on text queries, automatically "guess" which shading method best suits
a given artistic style. For example, if the user enters the prompt "in the style of Japanese
animation", Al applies Toon shading, and if the style is "post-apocalyptic photorealism",
it selects PBR shading.

In addition to the choice of the surface shading method, the choice of the bidirectional
reflectance distribution function (BRDF) [21-24] is important, which is used, in particular,
to reproduce glare on object surfaces. BRDF is a key element in rendering, as it describes
how light is reflected from a surface depending on the angle of incidence and observation.
Diftferent materials have their own unique reflection properties - for example, metal has a
strong specular reflection, plastic - combined, and fabric - mainly diffuse. Traditionally,
the selection of an appropriate BRDF model (e.g., Phong, Cook-Torrance) and adjustment
of its parameters is performed manually, which requires a lot of experience. Al gives the

possibility to automate this process. The process of selecting a BRDF using the AI method
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begins with the analysis of input data - this can be photographs or scanned data of the
object, a 3D model, or even a text description of the material. A neural network trained on
a large database of examples automatically classifies the type of material, detects its
properties (roughness, surface shininess) and matches them with BRDF models that best
reflect the physical behavior of this material. For example, the system can automatically
recognize that a shiny black surface is a lacquered plastic and select the appropriate BRDF
with a microfacet structure.

Another direction is the use of neural networks to model unique BRDFs that cannot
be described by classical analytical methods. Typically, such functions provide a compact
approximation of measured data sets of the reflectance of materials. For example, the
neural network proposed by Sztrajman et al. [25] takes as input the halfway and difference
vectors, models the bidirectional reflectance distribution function and provides prediction
of the RGB components of the color intensity. The calculation time of the neural network
BRDF is comparable to the calculation time of the analytical BRDFs. Only 675
parameters are stored. In the standard case, this would require storing a large table of
measured data and applying decomposition methods to it.

In addition, modern Al systems can not only select a BRDF model, but also optimize
its parameters, such as roughness, shininess, albedo. This is achieved through inverse
rendering methods. A common direction of inverse rendering is the use of neural radiance
fields (NeRF) [26-28], which lie in predicting for selected points radiance values and
volumetric densities based on input photos. Based on the predicted data, volumetric
rendering methods are applied and the final image is formed. Similarly, specialized neural
rendering methods have been proposed for the reconstruction of BRDF values. The NeRO
method [29] provides the reconstruction of surface geometry and BRDF values by directly
using the rendering equation, as well as separate multilayer perceptrons for modeling
direct and indirect illumination.

When rendering 3D scenes, it 1s useful to select the optimal colors of materials. For
example, cold colors of materials can convey the atmosphere of the evening, and warm
ones - a cozy environment. Al can select the color for objects depending on their role, the

general atmosphere of the scene and lighting. If the object should attract attention, Al will
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choose more saturated, contrasting colors; if the object is secondary — muted, background
colors. When selecting colors, Al systems can use the rules of color science (color circles,
contrast and complement theories), as well as databases of trend combinations - for
example, from Pinterest, Behance or Adobe Color.

The post-processing stage of the generated image is also characterized by the wide
possibilities of using Al. In particular, Al is used for anti-aliasing, improving texture detail
level, correcting lighting and shadows, and changing the image style. Anti-aliasing is the
process of smoothing out the jagged edges that appear when generating images with
limited resolution of the display device. Traditional anti-aliasing methods (SSAA, MSAA,
FXAA, TAA) cope with this task quite well, but have their limitations: high load on the
GPU, image blurring, problems with details or motion effects. The use of Al gives the
possibility to achieve better anti-aliasing quality with lower resource consumption and
with a smarter approach to preserving details.

Let's consider Al-based anti-aliasing methods: DLSS, DLAA, FSR, XeSS, as well
as the new concept of Smart Anti-Aliasing.

A well-known example of combining SSAA (Super Sampling Anti-Aliasing) and
Al is Nvidia's Deep Learning Super Sampling (DLSS) technology. DLSS [30] lies in that
the deep neural network is trained on the pairs "low resolution + artifacts" - "high
resolution without aliasing". During rendering, the image is formed in low resolution and
intelligently scaled.

Another technology Nvidia DLAA (Deep Learning Anti-Aliasing) [30], unlike
DLSS, involves preserving the original resolution. A special intelligent technology is used
to smooth the contours. In general, the image processing process is of higher quality, but
less productive compared to DLSS.

Intel XeSS technology [31] uses machine learning for smoothing and scaling,
working even on third-party video cards.

AMD FidelityFX Super Resolution (FSR) [32] 4 also provides increased image
resolution and is evolving towards integration with Al.

Traditional Temporal Anti-Aliasing (TAA) uses information from previous frames

to smooth the image, but has drawbacks such as motion blur. Al can analyze frames more
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deeply and adapt anti-aliasing much more accurately. For example, K. Herveau et al. [33]
proposed using CNNs to predict the values of two filters used to combine the rendered
frame and information from previous frames.

Let's analyze the concept of Smart Anti-Aliasing. In future implementations, Al will
be able to understand what is depicted in the scene. For example, if an edge belongs to a
character's face, one type of anti-aliasing is applied, and if it is part of the distant
background, another, less expensive type.

This is a step towards fully integrating Al into graphics pipelines.

Let's compare classical and Al anti-aliasing methods (Table 1) according to the

criteria of "productivity", "smoothing quality", "detail preservation", "dependency on

resolution”, "scene adaptation”, "training on data", "GPU support", "application".
Table 1
Comparison of classical and Al-based anti-aliasing methods
Characteristics Classical methods Al-based methods (DLSS, DLAA,
(SSAA, FXAA, MSAA, TAA) XeSS, FSR)
Productivity Average or low High
Smoothing quality | Good, but often with artifacts (blur, | High accuracy, minimum artifacts
ghosting)
Detail Fine textures are often blurred The sharpness of edges and details is
preservation preserved
Dependency on | Work better when the screen | Efficient even when  screen
resolution resolution is high resolution is relativelty low
Scene adaptation | Fixed approach Dynamic adaptation to the motion
and context of scene
Training on data | Absent Big datasets are used
GPU support High compability Require special hardware (like
tensor cores) and API
Application Universal (games, Ul, video) Mainly in games with Al support

The advantages of Al anti-aliasing are higher quality of smoothing, which is

performed only where needed, fewer artifacts, and adaptation to the scene context.

Let's consider the main modern Al anti-aliasing methods in more detail (Table 2).
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Table 2
Examples of modern Al-based methods of anti-aliasing
Title Developer Technology Characteristics Accessibility
DLSS 4 | NVIDIA Super Frame Generation, high-quality | RTX 50, partially
Sampling+Al smoothing RTX 20+
DLAA | NVIDIA Al Anti- | Focused on quality without | RTX 20+
Aliasing scaling
XeSS Intel Al Upscaling Performs best with Intel Arc, | Intel Arc, Xe-LP,
supports other GPUs AMD, NVIDIA
FSR4 | AMD Al Upscaling Introducing Al-upscaling for a | AMD RX 9070/
high quality smoothing 9070 XT

Therefore, Al upscaling is broadly used to increase the resolution and quality of
images. Rendering at low resolution before upscaling provides efficient generation of
3D-frames.

Conclusions. In the work, it is analyzed the usage of Al for generating graphic
images. Diffusion models, GANSs, and transformers are most often used to generate
images. Transformers effectively analyze the semantics of a text query. GANs generate
realistic images, but their training is unstable. Diffusion models generate high-quality
images and are stably trained, but are less productive. Direct image generation
significantly saves image creation time compared to using traditional graphic tools.
The use of Al at different stages of the graphics pipeline gives a possibility to generate
a 3D-model and texture from a photo, optimize a 3D-model, select a shading method,
encode tabular values of the light reflection model, select material colors, and improve
the quality of image post-processing.
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