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Abstract. In the work, it is analyzed the main aspects of artificial intelligence 

usage for the formation of graphic images. The main stages of the graphics pipeline for 

image formation and the prospects of applying artificial intelligence for their 

optimization are considered. Generative adversarial networks, diffusion models, 

transformers, ensemble learning methods, which are used for image generation, are 

characterized. Direct image generation as the alternative to the image formation using 

graphics editing tools is examined. The ways of optimizing the stages of 3D-model 

formation, texture generation, texture mapping, 3D-model’s surface shading and 

formed image post-processing are analyzed in detail. 

Keywords: rendering, generative adversarial networks, transformers, diffusion 

model, graphics pipeline. 
 

Introduction. Current state of computer graphics technologies development is 

characterized by a constant increase of requirements to the realism and productivity of 

image formation. Formation of highly realistic images involves considering the 

geometric features of scene’s object surfaces, optical properties of materials, key 

aspects of light interaction with the surface. At the same time, in the systems of virtual 

reality and interactive computer games it is necessary to provide the formation of 

images in the real-time mode. The development of artificial intelligence (AI) 
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algorithms has significantly expanded the list of main approaches to image formation 

and processing. Therefore, AI usage gives the possibility to provide a highly realistic 

and highly productive image creation at the same time. As a result, the analysis of 

applying AI for direct image generation and optimization of traditional image 

formation techniques is actual. 

Literature Analysis and Problem Statement 

Formation of graphic images [1] is a complex task, which includes a few key 

stages and uses different technologies for creating, editing, and visualizing the graphic 

content.  

The process begins with the modelling [2], where artists create 3D-models of 

objects, using special software tools, precisely determining the forms, sizes and 

proportions of models. The next is texturing [3], where textures are mapped into the 

surfaces of 3D-models in order to provide them with the realistic appearances. After 

texturing, the lighting modelling stage begins [4], where the respective shadows and 

glares on objects are reproduced based on the normalized vectors [5,6] to light source 

and the viewer. Rendering [7] is the process, where all models, textures and lighting 

parameters are combined for the creation of final image. As a result, the color intensity 

is calculated for every point of image. Consequently, rendering can require significant 

computational resources of computer. There are different techniques of rendering, 

including rasterization and ray tracing. Rasterization [2] is fast and effective, but cannot 

provide such level of realism as ray tracing [2], which requires much more 

computational resources, while providing very realistic images, reproducing complex 

effects of lighting and shadowing. The process ends with a post-processing [8], which 

involves color correction, adding visual effects and other changes, which improve the 

general appearance of the final image. 

The listed stages together create the graphics pipeline for image formation (Fig. 

1) [9]. The sequence of graphics pipeline stages is general and may vary slightly in 

special cases.  

At the same time, the fast development of AI gives the possibility of optimal 

object’s polygonal model formation, generation of photorealistic textures, 
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determination of appropriate lighting model at the respective stages of graphics 

pipeline. Additionally, the direct generation of a highly realistic image based on the 

text description or three-dimensional object’s model is possible.  

 

Fig. 1. Main stages of general graphics pipeline [9] 
 

Therefore, AI tools give the possibility to effectively augment the current image 

formation methods. Hence, conducting the analysis of AI usage for image formation is 

actual. 

Research Results 

Main Neural Architectures and Methods for Image Generation 

In the process of generating graphic images using AI, various neural network 

architectures are used, each of which has its own characteristics, advantages, and scope 

of application. 

One of the most common directions is the use of Generative Adversarial Networks 

(GAN) [10]. This direction involves the interaction of two neural networks - a 

generator and a discriminator. The generator creates new images based on random 

input data or feature vectors, and the discriminator tries to distinguish the generated 

image from the real one. During the training process, both networks are improving, and 
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eventually the generator begins to create images so realistic that the discriminator 

cannot determine whether they are artificial. Conditional GANs (cGAN) [10] give the 

possibility to set additional conditions for generation. For example, the user can specify 

the category of the image. In particular, the Pix2Pix model [11] learns the 

transformation of an image from one type to another. For example, a satellite photo of 

a landscape is transformed into a map of the area. At the same time, paired samples of 

the original and transformed images are necessary during its training. CycleGAN [10], 

unlike cGAN, does not require using pairs of original and transformed images. The 

CycleGAN architecture involves the use of two generators and two discriminators. The 

first generator generates a transformed image based on the original, the second 

generator reconstructs the original based on the transformed image. As a result, cyclic 

consistency is ensured. A transformed image is generated in such way that original 

image can be reconstructed as accurately as possible. Progressive GAN (PGGAN) [10] 

lies in gradually increasing the sizes of the generator and discriminator during training. 

This provides a gradual formation of the image from low to high resolution. 

Wasserstein GAN (WGAN) [10] involves the use of an alternative error function 

Wasserstein distance, which provides more stable training on the data. 

Another type of generative neural network are autoencoders [10], which are used 

for image compression and restoration. They consist of two parts: an encoder that 

converts an image into a compressed feature vector, and a decoder that uses this vector 

to reproduce or generate a new image. Unlike classical autoencoders, Variational 

Autoencoders (VAEs) work with probability distributions, which allow the model to 

learn the creation of new images that are variations of those already seen. As a rule, 

GANs provide clearer images compared to autoencoders. 

Another important type of generative neural networks are diffusion models [12], 

which have become popular thanks to systems such as DALL·E 2, Stable Diffusion, 

and Midjourney [12]. These models work on the principle of gradual “cleaning” of 

noise. First, the model takes a random noisy array of pixels, and then, after hundreds 

or thousands of iterations, using the back diffusion process, transforms it into an 

ordered image that corresponds to a given text description. This approach ensures high 
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quality and detail of the generated images. Compared to GANs, diffusion models are 

characterized by more stable training, but less productive image generation. 

Another important method is the use of transformers [13], which were originally 

developed for natural language processing, but later adapted for visual tasks. They 

provide the possibility to analyze a text query in a complex context, taking into account 

the semantic connections between words, emotional coloring and style. For example, 

the CLIP (Contrastive Language–Image Pretraining) model [14], developed by 

OpenAI, gives the possibility to compare text descriptions with visual images, find 

correspondences and form semantic connections. Transformers involve the use of 

attention mechanisms [13], which allow the model to "understand" which elements of 

the text description are the most important, and accordingly focus attention on 

generating key details of the image. 

The method of image generation through combining several layers of different 

levels of abstraction — the so-called Hierarchical Generative Models — is gaining 

popularity. Image creation occurs in stages: first, the general structure of the scene is 

formed, then the main color arrays are filled, and only after that, small details, shadows, 

textures, and realistic effects are added. 

In addition, there are ensemble methods that combine several models 

simultaneously [15]. In such systems, the result is generated by several different 

models, after which the best option is selected or several partial results are combined 

into a single composition. In particular, Y. Wang et al. [15] distinguish three directions 

for training GAN ensembles. Standard ensemble (eGANs) [15] lie in that the several 

GANs are trained on a dataset with random initial parameters. When generating an 

image, one of the models is randomly selected. Self-ensemble GANs (seGANs) [15] 

lie in that the each GAN in the ensemble is characterized by the same set of initial 

parameters and differs in the number of training iterations. Cascade GANs (cGANs) 

[15] are characterized by the use of a sequence of GANs. Each GAN improves the 

visualization results of the previous model, and the transition to the next GAN is carried 

out if the discriminator accuracy exceeds a certain threshold value. 
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One of the most promising and relatively new directions is the use of hybrid models 

that combine the capabilities of language and image processing in a single architectural 

space. They are able to analyze text queries more deeply, taking into account not only 

keywords, but also context, logic, stylistic features and even the hidden mood of the 

description. An example of a hybrid model is the combination of the CLIP model, which 

provides the analysis of correspondence between text and image, and VQGAN for image 

generation [16]. VQGAN (Vector Quantised GAN) is a modification of GAN, which lies 

in using a special codebook to improve the quality of the generated image. 

Another promising direction is the use of reinforcement learning, when the model 

learns to improve results not only based on statistical correspondences, but also through 

"rewards" for high-quality images. 

Key Aspects of Training Model for Image Generation 

An important aspect of the process of generating graphical images using AI is 

training the model. To achieve high-quality generation, neural networks are trained on 

huge arrays of images accompanied by descriptions, tags or metadata. The model 

gradually learns to recognize patterns, structures, color schemes, compositional 

techniques and contextual connections between words and visual elements. For example, 

it remembers that the phrase “blue sky” is most often associated with a background, and 

“person in a coat” with a certain type of clothing. The more data the model receives, the 

more accurately it can generate relevant images. However, training on such arrays also 

creates the risk of accidentally reproducing fragments of existing images. 

In addition, modern systems often use the Transfer Learning method - retraining 

already trained models on new, more specific data sets. This gives the possibility to 

adapt models to specific styles and genres. As a rule, transfer learning is used in cases 

of limited data, high complexity of training a model from scratch. An important 

innovation is LoRA (Low-Rank Adaptation) - a method of retraining models with 

minimal computing resources. The method lies in "freezing" the training parameters of 

a large model and training the parameters of additional small-sized matrices. 
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Stages of the Direct Image Generation Process 

The process of generating graphic images using AI consists of several sequential 

stages that depend on the type of model used, but the general logic of such systems 

remains the same. 

It all starts with entering a text description or other type of query — it can be a 

key phrase, a set of tags, an image, or a combination of them. Such a text query is called 

a “prompt” and is the basis for further work. The user formulates his vision of the 

desired result: for example, “a futuristic city at night, with neon lighting, in a cyberpunk 

style.” 

The AI-system then interprets this query using a pre-trained transformer model 

that converts the text into a numerical representation—a feature space vector. This 

vector contains semantic information about objects, their relationships, styles, colors, 

spatial location, and more. 

The next stage is the image generation itself. In the case of GAN [10], a special 

generator creates an initial image based on feature vectors, after which the 

discriminator evaluates its realism. Both networks work together until the generator 

learns to create the most plausible images. In diffusion models [12], the process begins 

with random noise — a matrix of random pixels, which is cleaned up in several hundred 

or thousand iterations and takes the form of an image according to the content of the 

query. The model constantly compares the intermediate results with the semantics of 

the entered description, adjusting the shape, color, shadows, proportions of objects and 

other visual characteristics. Fig. 2 shows an example of an image generated using the 

DALLE 3 model.  

Once the image is generated, the user has the opportunity to modify it. In particular, 

the Neural Style Transfer method can be used to change the style. The neural network 

extracts contour or structural information from one image and style information from 

another, and then combines them into a new visual object. For example, images are 

transformed into "paintings" in the style of Van Gogh, Picasso, or modern artists. 
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Fig. 2. Example of generated image using DALLE 3 model 
 

From a technical perspective, the entire image generation process is implemented on 

powerful graphics processing units (GPUs), which process large amounts of data and 

perform parallel calculations necessary to quickly generate high-quality images. The result 

is output as a finished digital image in JPEG, PNG or even PSD format. 

Applying Artificial Intelligence at Different Stages of Graphics Pipeline 

Let's analyze the application of AI at the following stages of the graphics pipeline [9]: 

polygonal model formation, texturing, shading, and post-processing. 

Using AI to generate polygonal models is one of the promising technologies in 3D-

graphics. A polygonal model is a 3D-model built from a large number of polygons that 

describe the surface of an object. Typically, creating such models requires complex manual 

labor and a large amount of time, but applying AI significantly optimizes this process. 

One of the main directions of appying AI in creation of polygonal models is generation 

of three-dimensional objects on the basis of two-dimensional images. For example, AI 

models built on the basis of convolutional neural networks (CNN) can restore depth of a 

scene using so-called depth maps, which are then used to build a polygonal mesh. Another 

promising method is to use generative models to form 3D models based on text description. 

For example, DreamFusion [17] from Google allows to create detailed 3D model on the 

basis of given text. In Fig. 3 examples of DreamFusion generated 3D models based on text 

description are given. 
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Fig. 3. Examples of generated 3D-models using DreamFusion [17] 
 

Another direction is automated retopology [18]. This is the process of transforming 

an irregular polygonal model into an ordered, optimized model with fewer polygons [19] 

using AI or specialized algorithms, while preserving the object's shape and visual quality. 

Retopology is an important step in 3D-modeling, especially when the original model was 

created manually or generated by scanning or other methods, which often produce a large 

number of triangles without a logical structure. Such "dirty" geometry is not suitable for 

animation, real-time rendering, or integration into game engines. Modern automated 

retopology tools, such as ZRemesher in ZBrush, Quad Remesher, Instant Meshes, 

TopoGun, as well as individual AI solutions built into Blender, Houdini, and Maya, use a 

variety of algorithms: from heuristic and analytical to neural networks. The user can set 

parameters such as density limits and level of detail. More advanced algorithms are able 

to recognize anatomical features or logical parts of an object and independently determine 

where a higher mesh density is needed (for example, in places of animation), and where it 

can be reduced without loss of quality. In particular, scientists from the University of 

Berkeley (USA) are developing the Retopokill software tool [18] for optimizing polygonal 

models in Blender based on AI. 

Let’s consider a conceptual model of automated AI retopology of object models. 

First, the AI analyzes the surface of the object, identifying the main features of the shape: 

bends, protrusions, depressions. The system builds a surface curvature map, which 

determines where more polygons need to be placed to maintain accuracy, and where the 

mesh density can be reduced. The second stage is to determine the edge flow and guide 

curves of the model. The neural network analyzes the logic of building the topology: for 

example, how to place polygons around the eyes, mouth, joints, folds of the object. The 
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third stage is building the primary mesh. At this stage, the system forms a base mesh of 

regular quads or triangles. The algorithm automatically adjusts the sizes and locations of 

polygons to preserve the general contour of the surface, while minimizing the number of 

polygons and preventing the appearance of excess geometric elements. The next stage is 

to optimize the newly created topology. The algorithm corrects the placement of vertices, 

eliminates topological artifacts (for example, excess vertices). The mesh density can be 

corrected - for example, higher density in areas of the face where there will be deformation 

during animation, and lower in flat areas, such as the back. After that, attributes from the 

initial model are transferred - such as normal maps, textures. The final stage is the output 

of the final retopologized model, ready for export. The user is given the opportunity to 

compare the initial and optimized models, as well as manually make adjustments if 

necessary. In general, the direction of automated retopology is characterized by a 

significant amount of research, but the number of ready-made solutions in the form of 

plugins is insignificant. This is explained by the instability of the results of AI optimization 

of the polygonal model, imperfect training data sets. 

AI can automate the texturing process by using large datasets to generate textures 

from existing images, which significantly speeds up and optimizes the workflow. The 

Texture Synthesis method [20] allows using the VGG-19 (CNN) model to generate a 

texture that matches a real photo. To determine the accuracy of texture generation, the 

Gram matrices for the reference and generated images are compared. Technologies such 

as GAN are used to increase the resolution of textures. In addition, AI can detect and 

automatically correct visual defects in textures. 

The shading stage involves determining the color intensity of each pixel in the image. 

In computer graphics, there are a large number of shading methods [1], such as Gouraud 

shading, Phong shading, Flat shading, PBR shading, and others, which differ in the level 

of realism, performance, and stylization. The choice of a shading method usually depends 

on the context of the task: the scene, the material, the target graphics style (realistic or 

stylized), technical constraints, and the target device (game console, mobile device, render 

farm). AI can be effectively used to automatically select the shading method, which is 

especially useful in interactive rendering systems. 
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There are four directions of using AI to select a shading method for scene. The first 

method is to classify the scene by type. The neural network analyzes the input parameters 

(number of objects in the frame, presence of dynamic lighting, type of materials, type of 

game or application) and classifies it as corresponding to a certain style: realistic, stylized, 

technical, artistic, etc. Based on the analysis, the AI recommends the optimal shading 

method: for realistic scenes - PBR or Phong shading, for stylized - Toon shading, for 

prototype scenes or scenes of technical renderers - Flat shading. The second direction is 

the analysis of materials and lighting. The AI system can study the materials of the scene, 

their characteristics (surface shininess, roughness), the number of light and shadow 

sources, and on this basis predict which shading method will best convey the visual 

properties of the material. For example, if many shiny surfaces are detected, AI can 

recommend using Phong shading, if matte materials prevail, Gouraud shading, and in the 

case of complex materials (hair, fabric) - PBR shading. The third direction is performance 

optimization. It is possible to build a system that analyzes device resources, the number of 

objects in the scene, the frame rate and dynamically changes the shading method in real 

time. For example, on weak devices, it automatically turns on Flat shading or Gouraud, 

and on powerful devices, PBR with HDR lighting. The fourth option is to use generative 

models that, based on text queries, automatically "guess" which shading method best suits 

a given artistic style. For example, if the user enters the prompt "in the style of Japanese 

animation", AI applies Toon shading, and if the style is "post-apocalyptic photorealism", 

it selects PBR shading. 

In addition to the choice of the surface shading method, the choice of the bidirectional 

reflectance distribution function (BRDF) [21-24] is important, which is used, in particular, 

to reproduce glare on object surfaces. BRDF is a key element in rendering, as it describes 

how light is reflected from a surface depending on the angle of incidence and observation. 

Different materials have their own unique reflection properties - for example, metal has a 

strong specular reflection, plastic - combined, and fabric - mainly diffuse. Traditionally, 

the selection of an appropriate BRDF model (e.g., Phong, Cook-Torrance) and adjustment 

of its parameters is performed manually, which requires a lot of experience. AI gives the 

possibility to automate this process. The process of selecting a BRDF using the AI method 
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begins with the analysis of input data - this can be photographs or scanned data of the 

object, a 3D model, or even a text description of the material. A neural network trained on 

a large database of examples automatically classifies the type of material, detects its 

properties (roughness, surface shininess) and matches them with BRDF models that best 

reflect the physical behavior of this material. For example, the system can automatically 

recognize that a shiny black surface is a lacquered plastic and select the appropriate BRDF 

with a microfacet structure. 

Another direction is the use of neural networks to model unique BRDFs that cannot 

be described by classical analytical methods. Typically, such functions provide a compact 

approximation of measured data sets of the reflectance of materials. For example, the 

neural network proposed by Sztrajman et al. [25] takes as input the halfway and difference 

vectors, models the bidirectional reflectance distribution function and provides prediction 

of the RGB components of the color intensity. The calculation time of the neural network 

BRDF is comparable to the calculation time of the analytical BRDFs. Only 675 

parameters are stored. In the standard case, this would require storing a large table of 

measured data and applying decomposition methods to it. 

In addition, modern AI systems can not only select a BRDF model, but also optimize 

its parameters, such as roughness, shininess, albedo. This is achieved through inverse 

rendering methods. A common direction of inverse rendering is the use of neural radiance 

fields (NeRF) [26-28], which lie in predicting for selected points radiance values and 

volumetric densities based on input photos. Based on the predicted data, volumetric 

rendering methods are applied and the final image is formed. Similarly, specialized neural 

rendering methods have been proposed for the reconstruction of BRDF values. The NeRO 

method [29] provides the reconstruction of surface geometry and BRDF values by directly 

using the rendering equation, as well as separate multilayer perceptrons for modeling 

direct and indirect illumination. 

When rendering 3D scenes, it is useful to select the optimal colors of materials. For 

example, cold colors of materials can convey the atmosphere of the evening, and warm 

ones - a cozy environment. AI can select the color for objects depending on their role, the 

general atmosphere of the scene and lighting. If the object should attract attention, AI will 



177 

choose more saturated, contrasting colors; if the object is secondary – muted, background 

colors. When selecting colors, AI systems can use the rules of color science (color circles, 

contrast and complement theories), as well as databases of trend combinations - for 

example, from Pinterest, Behance or Adobe Color. 

The post-processing stage of the generated image is also characterized by the wide 

possibilities of using AI. In particular, AI is used for anti-aliasing, improving texture detail 

level, correcting lighting and shadows, and changing the image style. Anti-aliasing is the 

process of smoothing out the jagged edges that appear when generating images with 

limited resolution of the display device. Traditional anti-aliasing methods (SSAA, MSAA, 

FXAA, TAA) cope with this task quite well, but have their limitations: high load on the 

GPU, image blurring, problems with details or motion effects. The use of AI gives the 

possibility to achieve better anti-aliasing quality with lower resource consumption and 

with a smarter approach to preserving details. 

Let's consider AI-based anti-aliasing methods: DLSS, DLAA, FSR, XeSS, as well 

as the new concept of Smart Anti-Aliasing. 

 A well-known example of combining SSAA (Super Sampling Anti-Aliasing) and 

AI is Nvidia's Deep Learning Super Sampling (DLSS) technology. DLSS [30] lies in that 

the deep neural network is trained on the pairs "low resolution + artifacts" - "high 

resolution without aliasing". During rendering, the image is formed in low resolution and 

intelligently scaled.  

Another technology Nvidia DLAA (Deep Learning Anti-Aliasing) [30], unlike 

DLSS, involves preserving the original resolution. A special intelligent technology is used 

to smooth the contours. In general, the image processing process is of higher quality, but 

less productive compared to DLSS.  

Intel XeSS technology [31] uses machine learning for smoothing and scaling, 

working even on third-party video cards.  

AMD FidelityFX Super Resolution (FSR) [32] 4 also provides increased image 

resolution and is evolving towards integration with AI.  

Traditional Temporal Anti-Aliasing (TAA) uses information from previous frames 

to smooth the image, but has drawbacks such as motion blur. AI can analyze frames more 
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deeply and adapt anti-aliasing much more accurately. For example, K. Herveau et al. [33] 

proposed using CNNs to predict the values of two filters used to combine the rendered 

frame and information from previous frames.  

Let's analyze the concept of Smart Anti-Aliasing. In future implementations, AI will 

be able to understand what is depicted in the scene. For example, if an edge belongs to a 

character's face, one type of anti-aliasing is applied, and if it is part of the distant 

background, another, less expensive type.  

This is a step towards fully integrating AI into graphics pipelines.  

Let's compare classical and AI anti-aliasing methods (Table 1) according to the 

criteria of "productivity", "smoothing quality", "detail preservation", "dependency on 

resolution", "scene adaptation", "training on data", "GPU support", "application". 

Table 1  

Comparison of classical and AI-based anti-aliasing methods 

Characteristics Classical methods  
(SSAA, FXAA, MSAA, TAA) 

AI-based methods (DLSS, DLAA, 
XeSS, FSR) 

Productivity Average or low High 
Smoothing quality Good, but often with artifacts (blur, 

ghosting) 
High accuracy, minimum artifacts 

Detail 
preservation 

Fine textures are often blurred The sharpness of edges and details is 
preserved 

Dependency on 
resolution 

Work better when the screen 
resolution is high 

Efficient even when screen 
resolution is relativelty low 

Scene adaptation Fixed approach Dynamic adaptation to the motion 
and context of scene 

Training on data Absent Big datasets are used 
GPU support High compability Require special hardware (like 

tensor cores) and API 
Application Universal (games, UI, video) Mainly in games with AI support 

 

The advantages of AI anti-aliasing are higher quality of smoothing, which is 

performed only where needed, fewer artifacts, and adaptation to the scene context.  

Let's consider the main modern AI anti-aliasing methods in more detail (Table 2). 
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Table 2  

Examples of modern AI-based methods of anti-aliasing 

Title Developer Technology Characteristics Accessibility 
DLSS 4 NVIDIA Super 

Sampling+AI 
Frame Generation, high-quality 
smoothing 

RTX 50, partially 
RTX 20+ 

DLAA NVIDIA AI Anti-
Aliasing 

Focused on quality without 
scaling 

RTX 20+ 

XeSS Intel AI Upscaling Performs best with Intel Arc, 
supports other GPUs 

Intel Arc, Xe-LP, 
AMD, NVIDIA 

FSR 4 AMD  AI Upscaling Introducing AI-upscaling for a 
high quality smoothing 

AMD RX 9070/ 
9070 XT 

 

Therefore, AI upscaling is broadly used to increase the resolution and quality of 

images. Rendering at low resolution before upscaling provides efficient generation of 

3D-frames. 

Conclusions. In the work, it is analyzed the usage of AI for generating graphic 

images. Diffusion models, GANs, and transformers are most often used to generate 

images. Transformers effectively analyze the semantics of a text query. GANs generate 

realistic images, but their training is unstable. Diffusion models generate high-quality 

images and are stably trained, but are less productive. Direct image generation 

significantly saves image creation time compared to using traditional graphic tools. 

The use of AI at different stages of the graphics pipeline gives a possibility to generate 

a 3D-model and texture from a photo, optimize a 3D-model, select a shading method, 

encode tabular values of the light reflection model, select material colors, and improve 

the quality of image post-processing. 
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