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Анотація Метою даної роботи є перевірка ефективності алгоритму машинного 

навчання на основі даних з відкритих баз, зокрема Material Project. 

Використовуваний штучний інтелект, заснований на лінійній регресії, застосовує 

трансферне навчання для адаптації до фізико-механічних моделей 

високоентропійних сплавів. Для реалізації використовуються відкриті Python-

модулі, що забезпечують гнучкість у дослідженнях. Точність моделювання фізико-

механічних властивостей матеріалу залежить від кількості елементів у складі та 

здатності комбінувати матеріали в одну ланку. Для перевірки результатів 

експериментів у практиці на основі літературних джерел показано метод визначення 

твердості за Вікерсом, що дозволило оцінити коректність запропонованого підходу 

до прогнозування властивостей високоентропійних сплавів.  

Ключові слова: штучний інтелект (ШІ), машинне навчання (МН), 

матеріалознавство, сплави, метод Вікерса, твердість, структура, механічні 

властивості, високоентропійні сплави. 

ARTIFICIAL INTELLIGENCE FOR ENHANCING THE 

MECHANICAL PROPERTIES OF MATERIALS 

Kyrylakha Svitlana 

Abstract. The aim of this work is to test the effectiveness of a machine learning 

algorithm based on data from open databases, specifically Material Project. The 

artificial intelligence used, based on linear regression, applies transfer learning to adapt 

to the physicochemical models of high-entropy alloys. Open Python modules are used 

for implementation, providing flexibility in research. The accuracy of modeling the 
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physicochemical properties of the material depends on the number of elements in the 

composition and the ability to combine materials into a single system. To verify the 

experimental results in practice, the Vickers hardness method, based on literature 

sources, is shown, which allowed for the assessment of the correctness of the proposed 

approach to predicting the properties of high-entropy alloys. 

Keywords: Artificial Intelligence (AI), Machine Learning (ML), Materials 

Science, Alloys, Vickers Method, Hardness, Structure, Mechanical Properties, High-

Entropy Alloys. 
 

Вступ. Розвиток штучного інтелекту (ШІ) став одним із найзначніших 

досягнень сучасної науки та техніки, відкриваючи нові можливості для 

автоматизації досліджень, аналізу великих масивів даних і створення 

інтелектуальних систем підтримки прийняття рішень. ШІ уже знаходить широке 

застосування у різних сферах наукової діяльності, включаючи 

матеріалознавство, біотехнології, фізику, хімію, медицину, економіку та багато 

інших галузей [1].  

Штучний інтелект (ШІ) (англ., Artificial Intelligence (AI)) – це галузь 

інформатики, яка розробляє системи, здатні виконувати розумові процеси і 

розв’язувати проблеми, традиційно виконувані людиною. ШІ є однією з 

найперспективніших технологій в умовах цифровізації. За прогнозами Fortune 

Business Insights, ринок ШІ зростатиме на 33,2 % щорічно в період 2020-2027 рр., 

а впровадження технологій організаціями збільшиться на 38,1 % у 2022-2030 рр. 

Машинне навчання (МН) – одна з провідних галузей штучного інтелекту, 

що розробляє алгоритми, здатні навчатися на основі даних і покращувати 

результати без явного програмування. Зі збільшенням обсягу даних у 

матеріалознавстві, МН надає потужні інструменти для аналізу великих обсягів 

експериментальних та теоретичних даних. Сучасні методи, як глибоке навчання 

та нейронні мережі, дозволяють не лише аналізувати наявні матеріали, а й 

передбачати нові з необхідними властивостями, оптимізуючи процеси розробки. 

МН допомагає виявляти складні взаємозв'язки між складом, структурою та 
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властивостями матеріалів, підвищуючи ефективність досліджень і сприяючи 

інноваціям [2-5]. 

Останніми роками машинне навчання набуває все більшого значення в 

наукових дослідженнях, зокрема у хімії та матеріалознавстві, для вирішення 

таких задач, як визначення властивостей елементів і сполук, передбачення 

кристалізації та автоматичне опрацювання результатів експериментів. Одним із 

ключових застосувань є відкриття нових хімічних сполук та матеріалів, зокрема 

генерація молекулярних структур. На відміну від ab-initio моделювання, що 

потребує значних обчислювальних потужностей і часу, алгоритми машинного 

навчання підвищують точність і ефективність досліджень, використовуючи 

минулі експерименти як тренувальні дані. Це дозволяє зекономити матеріальні 

та часові ресурси, оскільки натреновані моделі можуть швидко обробляти тисячі 

сполук, значно зменшуючи витрати обчислювальних ресурсів. 

Аналіз літератури та постановка проблеми. Застосування методів 

машинного навчання (МН) у матеріалознавстві набуло значного розвитку 

завдяки зростанню обчислювальних потужностей і прогресу в теорії ШІ. Останні 

дослідження показують, що методи МН є потужними інструментами для аналізу 

великих обсягів даних і можуть істотно полегшити процес розробки нових 

матеріалів, що відповідають специфічним вимогам щодо механічних, фізичних 

та хімічних властивостей. Одним з основних напрямків застосування МН у 

матеріалознавстві є прогнозування властивостей матеріалів на основі їх складу 

та структури. Зокрема, дослідження Шива Гоела (Shiv Goel) та Гаррісона Д. 

Мартина (Harrison D. Martin) з University of California використовують алгоритми 

машинного навчання для аналізу та прогнозування механічних властивостей 

металів і сплавів. Вони застосовують глибоке навчання та нейронні мережі для 

аналізу взаємозв’язків між структурними характеристиками матеріалів і їх 

фізичними властивостями. Роботи цих вчених демонструють, як МН може 

допомогти в розробці високоміцних сплавів для різних промислових 

застосувань. Маттс Тегмарк (Mats Tegmark), відомий своїми дослідженнями в 

галузі квантових матеріалів і нанотехнологій, вивчає, як алгоритми машинного 
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навчання можуть бути використані для оптимізації властивостей матеріалів, що 

застосовуються у високотехнологічних сферах. Його робота зосереджена на 

розробці нових матеріалів з використанням ШІ, що може значно прискорити 

процеси розробки та впровадження нових технологій. Також Джеймс А. Лейб 

(James A. Leib), дослідник з University of Michigan, зосереджений на застосуванні 

МН для прогнозування термодинамічних властивостей матеріалів. Він активно 

розробляє методи, які дозволяють використовувати машинне навчання для 

точного прогнозування поведінки різних матеріалів у складних умовах, таких як 

високі температури чи агресивні середовища [6-9]. 

Незважаючи на прогрес у застосуванні машинного навчання в 

матеріалознавстві, є проблеми, які потребують вдосконалення моделей для 

роботи з різноманітними матеріалами та їх специфікою. Особливу увагу слід 

приділити вирішенню проблеми варіативності експериментальних даних і 

адаптації моделей для прогнозування стійкості до корозії, термостійкості та 

механічних властивостей матеріалів в різних умовах. Отже, проблема полягає в 

необхідності створення універсальних алгоритмів машинного навчання, які 

здатні ефективно працювати з великими і різноманітними наборами даних, а 

також у підвищенні точності прогнозування властивостей матеріалів для 

специфічних промислових застосувань. Для цього потрібно інтегрувати існуючі 

алгоритми з новими методами обробки та аналізу даних, що дозволить скоротити 

час розробки нових матеріалів і знизити витрати на дослідження та 

експерименти. 

Результати дослідження. Використання штучного інтелекту (ШІ) в 

наукових дослідженнях значно підвищує ефективність і точність аналізу, 

дозволяючи обробляти великі обсяги даних і знаходити нові закономірності. ШІ 

має низку переваг у порівнянні з традиційними методами досліджень, зокрема у 

матеріалознавстві та дослідженні фізико-хімічних властивостей матеріалів. 

Завдяки здатності до машинного навчання, ШІ може здійснювати прогнозування 

властивостей нових сплавів, оптимізувати експериментальні процеси та 

знижувати час, необхідний для досягнення результатів. 
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Серед основних переваг можна виділити: 

1. Швидкість обробки даних: ШІ дозволяє швидко аналізувати великі 

набори даних, що є критично важливим для наукових досліджень, де обсяг 

інформації може бути дуже великим. 

2. Точність прогнозування: Моделі на основі ШІ здатні передбачати 

фізико-механічні властивості матеріалів з високою точністю, навіть на основі 

обмежених даних. 

3. Оптимізація експериментів: Використання ШІ для автоматизації 

розрахунків дозволяє зменшити кількість експериментів, необхідних для 

досягнення точних результатів, що дозволяє зекономити час і ресурси. 

4. Ідентифікація нових закономірностей: Алгоритми ШІ можуть виявляти 

приховані закономірності у великих обсягах даних, що може привести до нових 

наукових відкриттів (табл. 1). 

Таблиця 1  

Переваги використання штучного інтелекту у наукових дослідженнях [10] 

Тема Опис 
Генерація та 
формулювання 
нових ідей 

Штучний інтелект допомагає дослідникам знаходити нові теми та 
напрямки для досліджень, а також надихає на розробку власних 
концепцій. 

Пошук 
актуальних 
джерел 

Технології штучного інтелекту дозволяють дослідникам швидко 
знаходити значущі роботи, що відповідають інтересам наукової 
спільноти, створюючи можливості для публікацій, які підвищують 
цитованість вченого. 

Обробка 
великих обсягів 
інформації 

Це дає авторам змогу швидко та ефективно аналізувати дані, виявляючи 
приховані патерни та закономірності, важкі для традиційних методів. 
Завдяки швидким алгоритмам ШІ, дослідники скорочують час аналізу, 
підвищуючи ефективність дослідження. 

 

У роботі показано [11] дослідження твердості Al-Co-Cr-Fe-Ni 

високоентропійних сплавів для ГЦК та ОЦК структур методами машинного 

навчання. Для ОЦК структури буде перевірена твердість за фізичною моделлю 

метода Віккерса. Для генерації сплавів у роботі використовуються різні 

кристалічні структури, обрані на основі вмісту елементів у високоентропійному 

сплаві. Кількість атомів визначається пропорційно вмісту елементів. Для 

розрахунку параметрів матеріалів використовуються дані з бази «Material 
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Project», зокрема параметри кристалічних решіток і щільності матеріалу. Вплив 

кристалічної структури на властивості матеріалу, такі як твердість і деформація, 

показує, що ОЦК структура має меншу твердість порівняно з ГЦК, що є більш 

жорсткою до деформацій. Щільність пакування для ОЦК структури можна 

розрахувати через радіус частинок, а для ГЦК — через діагоналі решітки. 

Щільність, як маса на одиницю об’єму, розраховується для кристалічної решітки 

при дослідженні фізико-механічних властивостей високоентропійних сплавів. 

𝜌 =
௠

௏
       (1) 

де 𝑚 – маса частинки, 𝑉 – об’єм кристалічної решітки 

 

Параметри твердості можуть відрізнятися від експериментальних через 

ідеальність матеріалу, прогнозованого за допомогою машинного навчання. Буде 

згенеровано 5630 систем з різним вмістом компонентів та проведено порівняння 

ОЦК і ГЦК структур з експериментальними даними. 

Були отримані значення твердості для ОЦК високоентропійного сплаву та 

виконано порівняння отриманих значень твердості відносно до 

експериментальних значень Al-Co-Cr-Fe-Ni (табл. 2). 

Таблиця 2  

Порівняння отриманих значень твердості відносно до 

експериментальних значень Al-Co-Cr-Fe-Ni [11] 

Твердість прогнозована (HV) Твердість експериментальна (HV) 
1 2 

566 538 [12] 
739 741 [12] 
639 635 [13] 

 

Одиниці виміру для порівняння були переведені в розрахунок за методом 

Віккерса, яким в основному перевіряють твердість сплаву. Наступна формула 

конвертує значення які були надані у роботі в ГПа до системи розмірності Вікерса: 

𝐻௏ =
ଶ௙ி௦௜௡ቀ

భయల°

మ
ቁ

ௗమ
= 1.854

ி

ௗమ
    (2) 
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Вміст Fe впливає на твердість матеріалу якщо порівнювати матеріал відносно 

інших компонентів в чистому вигляді. На рисунку 1 представлено залежність 

твердості від кристалічної структури ОЦК та ГЦК. Виявлено, що ГЦК структура 

зазвичай має вищу твердість, особливо при значному вмісті хрому та заліза. Деякі 

високоентропійні сплави можуть бути нестабільними, що слід враховувати при 

прогнозуванні. Відповідно до правила Юма-Розері, стабільність твердого розчину 

визначається обмеженнями на різницю атомних радіусів (≤10–15%) та 

електронегативність (≤0,4). Крім того, припускається однакова кристалічна решітка 

для всіх компонентів [14, 15]. 

 

Рис. 1. Порівняння значення твердості відносно зміні відсоткового вмісту Fe-Ni 

для матеріалу Al8Co8Cr29FexNiy для ГЦК та ОЦК кристалічної структури [11] 
 

Висновки. Показано ефективність застосування алгоритму машинного 

навчання на основі даних з відкритих баз, зокрема Material Project, для 

прогнозування фізико-механічних властивостей високоентропійних сплавів. 

Використання штучного інтелекту, заснованого на лінійній регресії та 

трансферному навчанні, дозволяє адаптувати модель до специфіки матеріалів, а 

метод Вікерса підтверджує коректність запропонованого підходу. 

Досліджено прогнозування фізико-механічних властивостей 

високоентропійних сплавів (Al-Co-Cr-Fe-Ni) методами машинного навчання. 

Показано можливості автоматизації процесу генерування та оцінки сплавів.  

 
 



112 

Список джерел 
1. Гончарова І. П. Використання штучного інтелекту в професійній діяльності 

педагога: можливості та виклики в умовах цифрового освітнього середовища // 
Професійна діяльність педагога в умовах цифрового освітнього середовища: 
матеріали міжрегіон. наук.-практ. семінару (27 квітня 2023 р.). - Біла Церква: БІНПО, 
2023. - С. 28-33. - URL: https://lib.iitta.gov.ua/735479/ 

2. Butler K. T., Davies D. W., Cartwright H., Isayev O., & Walsh A. (2018). Machine 
learning for molecular and materials science. Nature, 559(7715), 547-555. [Online]. 
Available: https://doi.org/10.1038/s41586-018-0337-2 

3. Friesner R. A. (2005). Abinitio quantum chemistry: Methodology and applications. 
Proceedings of the National Academy of Sciences, 102(19), 6648-6653. 

4. Maulud D. & Abdulazeez A. M. (2020). A review on linear regression 
comprehensive in machine learning. Journal of Applied Science and Technology Trends, 
1(4), 140-147. [Online]. Available: https://doi.org/10.38094/jastt1457 

5. Jha, D., Wolverton, C., & Agrawal, A. (2018). Machine learning for materials 
science: Recent advances and emerging applications. Materials Science and Engineering: R: 
Reports, 139, 1-22. https://doi.org/10.1016/j.mser.2018.01.001 

6. Xie, T., & Grossman, J. C. (2018). Crystal graph convolutional neural networks for 
an accurate and interpretable prediction of material properties. Physical Review Letters, 
120(14), 145301. https://doi.org/10.1103/PhysRevLett.120.145301 

7. Ward, L., Paul, A., Wolverton, C., & Agrawal, A. (2016). A general framework for 
predicting properties of inorganic materials using machine learning. Nature Materials, 14(3), 
240-248. https://doi.org/10.1038/nmat4136 

8. Raiko, T., Vainio, M., & Kaski, S. (2016). Machine learning for materials science: A 
review of computational methods and applications. Computational Materials Science, 113, 
253-263. https://doi.org/10.1016/j.commatsci.2015.10.026 

9. Agrawal, A., & Choudhary, A. (2016). Materials informatics and big data: Realizing 
the full potential of computational materials science. Computational Materials Science, 113, 
167-170. https://doi.org/10.1016/j.commatsci.2015.10.043 

10. Штучний інтелект при підготовці наукової роботи: Можливості та виклики : 
веб-сайт. URL : https://nim.media/articles/shtuchny-intelekt-pri-pidgotovtsi-naukovoyi-
roboti-mozhlivosti-ta-vikliki(дата звернення: 19.03.2025). 

11. Погорєлий, М. А. (2021). Аналіз фізико-механічних властивостей 
високоентропійних сплавів методами машинного навчання: дис. магістра, СДУ, Суми, 69 с. 

12. Kao Y.-F., Chen T.-J., Chen S.-K., Yeh J.-W. (2009). Microstructure and 
mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi high entropy 
alloys. J. Alloys Compd., 488, 57-64. 

13. Hsu C.Y. et al. (2010). Effect of iron content on wear behavior of 
AlCoCrFexMo0.5Ni high entropy alloys. Wear, 268(5–6), 653–659. 

14. C. Li, J.C. Li, M. Zhao, Q. Jiang, Effect of alloying elements on microstructure and 
properties of multiprincipal elements  

15. Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, H.Z. Fu, Microstructure and compressive 
properties of AlCrFeCoNi high entropy alloy, Materials Science and Engineering A 491 (2008) 
154–158. 

 
 

* * * 


