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Abstract. This study explores the transformative role of artificial intelligence (AI) 

tools in accelerating scientific hypothesis validation, focusing on the iterative use of 

reasoning and deep research large language models (LLMs). We classify LLMs into 

single-step, multi-step reasoning, and web-integrated deep research variants, 

demonstrating that ensembles of independent models enhance accuracy 

probabilistically from 8-27% for individual reasoning models to 48-62% for collective 

inference, when addressing complex physical queries. To illustrate the approach of 

collective AI inference, we examine case studies of diamond Bragg mirror reflectivity 

for keV-scale X-rays and metal vapor lasing for high-boiling-temperature metals. By 

iteratively prompting six LLMs with tailored queries and peer-reviewed data, we derive 

optimized theoretical results and experimental setups. The results underscore the 

ability of LLMs to accelerate scientific hypothesis testing, identify theoretical limits, 

and design experimental configurations while also highlighting the importance of 

verifying AI outputs, confronting AI with facts and follow-up questions, and 

accounting for AI model correlations. This framework pioneers a paradigm shift in 

interdisciplinary research, merging AI-driven reasoning with domain-specific 

expertise to resolve ambiguities in cutting-edge material science and photonics. 

Keywords: Artificial intelligence, Reasoning models, Deep research, Diamond 

Bragg mirrors, Metal vapor lasers 
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Introduction. Artificial intelligence has already found multiple applications in 

business – such as chatbots, image and pattern recognition, personalized marketing, 

healthcare disease detection and drug discovery, language processing, fraud detection, 

content creation, and energy management. Academic applications of AI are also 

emerging, particularly in data analysis (including pattern recognition, data mining, and 

statistical analysis), academic writing (such as style and grammar correction, 

translation, and plagiarism detection), and personalized tutoring. Typical accuracies of 

AI models in specialized applications are already high. For example, in natural 

language processing for translation, DeepL achieved 89% [1] accuracy in 2020, while 

Google Translate reached 86% in 2020 [1] and 80% [2] in 2022. 

Scientific research is a relatively new field for artificial intelligence. Due to the 

inherent complexity of scientific research, both in breadth and depth, AI tools were not 

widely applied to it until around 2024. However, the emergence of large language 

models (LLMs) in 2022 has opened an entirely new class of AI applications in natural 

language processing. These applications include creating new scientific hypotheses, 

quickly testing hypotheses, identifying arguments and dependencies, stimulating 

creative thinking, comparing the outputs of various LLMs, synthesizing multiple 

arguments through reasoning, and selecting arguments that might explain observed 

physical processes. This work summarizes the current state of the most advanced 

LLMs, their potential applications in scientific hypothesis creation and testing, and 

proposes multi-model AI reasoning (MMAR) framework as a viable approach to 

improve the accuracy of human-guided scientific AI inference towards record 48-62%. 

Literature Analysis and Problem Statement. The advancement of Large 

Language Models (LLMs) has catalyzed their adaptation for scientific reasoning, 

yielding distinct classes optimized for hypothesis testing and research workflows. 

These classes – single-step, reasoning, and deep research LLMs – differ fundamentally 

in their architectures, operational methodologies, and performance in scientific tasks. 

Single-Step Inference LLMs, such as GPT-3 [3][4], GPT-3.5, GPT-4, and GPT-4o, 

represent the foundational paradigm of language models. These systems generate 

responses in a single pass, relying exclusively on static, pre-defined training datasets. 
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While they excel at addressing straightforward queries with rapid responses and broad 

domain knowledge, their reliance on fixed datasets limits their utility in dynamic 

scientific contexts. Errors in complex reasoning tasks often arise due to the absence of 

iterative validation, and their knowledge remains confined to information available up 

to their training cutoff dates. Despite these constraints, single-step LLMs remain 

widely used for basic question-answering and preliminary data interpretation. 

Reasoning LLMs enhance this framework by incorporating iterative, multi-step 

reasoning processes [5]. Unlike their single-step counterparts, these models – 

exemplified by OpenAI o1, o3, DeepSeek – employ techniques like chain-of-thought 

prompting [5], where each step of reasoning builds on prior outputs. This cumulative 

approach allows for incremental validation, significantly improving accuracy in tasks 

requiring abstraction, causal inference, or counterfactual analysis. However, the 

computational demand escalates with reasoning depth, and errors in early steps may 

propagate through subsequent stages [6]. Despite these trade-offs, reasoning LLMs 

demonstrate superior performance in hypothesis testing and experimental design 

compared to single-step systems. The most advanced class, Deep Research LLMs [7], 

integrates multi-step reasoning with real-time external data retrieval. These models, 

including OpenAI’s o3-based DeepResearch, Perplexity’s DeepSeek R1 Deep 

Research, and Grok 3 xAI’s DeeperSearch, dynamically formulate search strategies by 

identifying key concepts within user queries. By accessing up-to-date scientific 

literature, clinical trials, or experimental datasets, they address the temporal limitations 

of static training data. This fusion of iterative reasoning and evidence-based validation 

achieves the highest accuracy in tasks such as literature synthesis, hypothesis 

generation, and experimental planning. For instance, Grok 3’s multi-agent framework 

stress-tests hypotheses against conflicting data, while DeepSeek R1 optimizes search 

strategies for precision. However, their efficacy depends on the reliability of external 

sources and incurs higher computational costs and latency. Table 1 summarizes key 

characteristics of leading Deep Research LLMs available on the market as of March 

2025 [9]. 
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Table 1.  

Accuracy of Deep Research LLMs with Reasoning and Web Search 

Functionality 

    Search features Accuracy Pricing 
Player Model Files 

 
 

Web 
search 

 

Correct Incorrect Monthly 

    % % $ 

OpenAI Deep Research + + 26.6% 73.4% 200 
Perplexity Deep Research + + 21.1% 78.9% 20 
xAI Grok 3 DeeperSearch + + 13.0% 87.0% 30 
MiniMax DeepSeek R1 + + 9.4% 90.6% 0 
DeepSeek DeepSeek R1 + - 8.9% 91.1% 20 
Alibaba QwQ 32B + + 8.2% 91.8% 0 
Gemini 2.5 Pro Deep Research - + 5.3% 94.7% 0 

 

Deep Research LLMs, leveraging dynamic data and multi-step workflows, attain 

the highest accuracy and adaptability to evolving scientific knowledge. Deep Research 

LLMs, such as Perplexity’s Deep Research, exemplify the potential of democratizing 

the access to advanced inference, balancing high accuracy, computational efficiency, 

and cost. In the next section, we will demonstrate how combining Deep Research AI 

models can significantly enhance reasoning accuracy compared to individual models. 

Research Methodology. The integration of multiple Deep Research Large 

Language Models (LLMs) represents a promising paradigm for improving accuracy in 

complex scientific reasoning tasks, particularly under conditions of uncertainty or 

incomplete data. This approach leverages probabilistic principles to mitigate individual 

model limitations, with implications for hypothesis validation, experimental design, 

and high-stakes decision-making. The ensemble efficacy arises from probability 

theory: For N independent models, each demonstrating a per-query accuracy of Xi, the 

probability that at least one model produces a correct answer is given by: 

 

This framework exponentially outperforms single-model accuracy when N > 1. 

However, there are critical caveats. First, models must exhibit independence to ensure 

errors remain uncorrelated (i.e., no shared training biases or data artifacts). Second, this 

logic applies exclusively to binary outcomes, where responses are categorically correct 
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or incorrect. A third requirement is static per-query accuracy, meaning model 

performance does not degrade with sequence length or task complexity. 

To contextualize these principles, consider the Humanity’s Last Exam benchmark 

– a simulated high-difficulty scientific reasoning test [8]. Empirical results demonstrate 

that an ensemble of the top six models (with accuracies as listed in Table 1) achieves a 

combined accuracy of 62%, while excluding computationally expensive and costly 

OpenAI Deep Research model reduces this to 48%. Individual models exhibit modest 

accuracy (5.3 – 26.6%), but strategic ensemble combinations yield disproportionate 

gains. Notably, the 62% ensemble accuracy surpasses the best single-model 

performance by 35%, aligning with theoretical predictions. 

Table 2. 

Theoretical Combined Accuracy of Top 6 Deep Research LLMs with 

Reasoning and Web Search Functionality 

    Search features Accuracy Pricing 
Player Model Files 

 
 

Web 
search 

 

Correct Incorrect Monthly 

    % % $ 

Top 6 models + + 61.8% 38.2% 270 
Top 6 models excl. OpenAI + + 48.0% 52.0% 70 

 

Implementation Framework 

The initial step involves the identification and clear delineation of the research 

objective. This is achieved through an extensive review of the existing literature, ensuring 

that the objective is both well-founded and contextually relevant. A panel of AI tools is 

then employed to determine the key drivers that are critical to achieving or maximizing 

the stated objective. These drivers represent the primary variables or conditions that may 

influence the outcome of the hypothesis validation process. The outputs from the various 

AI tools are synthesized to compile an exhaustive list of drivers. This comprehensive list 

forms the basis for subsequent analytical steps and ensures that all relevant factors are 

considered. Utilizing the complete list of drivers, a targeted prompt is developed with the 

explicit goal of optimizing the pathway to the stated objective. The prompt is designed to 

guide the AI models toward generating outputs that directly address the interplay of the 

identified drivers. The responses produced by the AI models are systematically analyzed 
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to identify convergence and divergence in the generated solutions. When outputs converge 

with minimal discrepancies, the result is interpreted as a viable solution, warranting further 

validation by a human expert. Conversely, if discrepancies or gaps are observed – where 

the AI tools provide conflicting responses – these gaps are documented for further 

analysis. In cases where discrepancies are present, the framework prescribes an iterative 

approach. The prompt is modified to explicitly incorporate the identified gaps, and the 

refined prompt to maximize the objective taking into account the gaps is reintroduced into 

the AI analysis cycle. This process is repeated. If subsequent iterations yield convergent 

responses or successfully bridge the gaps, the solution is considered validated and may 

serve as a working hypothesis to be presented to a human expert. If significant 

discrepancies persist despite iterative refinements, it may be concluded that a solution is 

not attainable with the current set of AI tools. Fig. 1 shows the approach. 

 

Fig. 1. AI-Assisted Process for Validating Scientific Hypotheses 
 

Case 1: Single Crystal Diamond Bragg Mirror Reflectivity for keV X-rays 

The development of high-reflectivity X-ray optics faces significant challenges due 

to the stringent material requirements for manipulating high-energy photons. While 

Mo/Si, Mo/B4C, Ru/B4C, W/C, W/Be, Si/C mirrors achieve 70–90% reflectivity [11], 

[12], [13] at grazing angles of incidence in the extreme ultraviolet (EUV) range (e.g., 13 

nm lithography systems) and X-ray range, dielectric mirrors in the near-infrared (NIR) 

exhibit near-perfect reflectivity (99.9998%) with transmission, scattering, and absorption 

losses as low as 1.6 ppm [14], [15]. Recent advances in single-crystal diamond Bragg 

mirrors have demonstrated exceptional reflectivity (>99%) for keV-scale X-rays at near-

normal incidence [16], enabling novel applications in X-ray free-electron laser oscillators 

(XFELOs) and coherent X-ray pulse stacking. However, the theoretical upper bounds of 



100 

diamond reflectivity remain unresolved due to complexities in the dynamic theory of 

Bragg diffraction. To address this, a multi-model artificial intelligence (AI) framework 

was deployed to systematically evaluate hypotheses governing diamond mirror 

performance. 

A panel of AI Deep Research models – Perplexity Deep Research, MiniMax 

DeepSeek-R1, Grok 3 DeeperSearch, and OpenAI o3-mini – was leveraged to analyze 

critical variables influencing single crystal diamond Bragg mirror performance. 

Specialized prompts were iteratively refined to query dominant drivers of reflectivity, 

including material properties (high Debye temperature, low atomic number of diamond), 

structural perfection (dislocation density), X-ray energy (higher energy implies lower 

photoelectric absorption and Compton scattering), crystal geometry (sufficient thickness 

to reflect more than 99% of X-rays, Bragg reflection choice), operating conditions 

(temperature minimizing lattice vibrations, narrow X-ray bandwidth to fit with the Bragg 

reflection), isotopic purity (12C single crystal diamond has slightly higher Debye 

temperature and lower lattice vibrations). 

Having identified all possible drivers of diamond mirror reflectivity, research 

strategy was focused at estimating theoretical limits under idealized conditions (zero 

dislocation density, cryogenic operating temperatures, isotopic 12C purity, sufficient 

thickness, right choice of the Bragg reflection, narrow X-ray bandwidth to fit the Bragg 

reflection). This translated into estimating minimum extinction length and highest 

absorption length to maximize reflectivity according to a classic formula: 

 

A prompt “What are the absorption and extinction lengths (mm) of ideal 12C diamond 

at 77K cryogenic temperature with zero dislocation density for 23.765 keV, 13.903 keV, 

31 keV, 35 keV, 44 keV X-rays?” was created. Inputs included peer-reviewed studies of 

Shvyd’ko et al., 2011 [16], computational datasets from the NIST X-ray mass attenuation 

database, and dynamical diffraction theory. Model responses were cross validated 

according to the methodology (Fig. 1). According to the models, the maximum attainable 

reflectivity of a diamond X-ray Bragg mirror in backscattering (normal-incidence Bragg 
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geometry) is achieved at 13.903 keV and is estimated at 99.97% (Grok-3 Think). This 

compares to 99.10% reflectivity actually measured at 13.903 keV, as experimentally 

demonstrated in [16]. Such a high reflectivity of 99.97% could theoretically enable multi-

pass resonators sustaining high efficiency for more than 1,000 passes. 

Case 2: Metal Vapor Lasers  

Metal vapor lasers were among the first types of lasers discovered in the 1950s and 

1960s, alongside dye and semiconductor lasers. Although other types of lasers – such as 

CO₂ lasers, fiber lasers, and diode-pumped solid-state lasers have since captured a larger 

share of the market, metal vapor lasers remain highly valued. They offer a wide range of 

over 480 different wavelengths, spanning from 224 nm to 6,457 nm, along with pulse 

durations in the nanosecond range, very narrow spectral lines for precise wavelength 

control, and high pulse repetition rates of several kilohertz. Laser emission has been 

observed in a total of 32 metals and 3 nonmetals, including Ag, Al, As, Au, Ba, Be, Bi, 

Ca, Cd, Cs, Cu, Dy, Eu, Fe, Ga, Hg, I, K, Mg, Mn, Na, Pb, Rb, Se, Sm, Sn, Sr, Ta, Te, Ti, 

Tl, Tm, V, Yb, and Zn [17]. 

Table 3.  

Sample Characteristics of Metal Vapor Lasers 

 
 

However, the energy conversion efficiencies of metal vapor lasers are relatively low, 

ranging from 0.01% to 2.9%, except in the case of alkali vapor lasers, for which efficiencies 

of 33-41% have been demonstrated [18][19]. In addition, due to constraints of optical 

materials (mirrors, lenses, Brewster plates), lasing in some refractory metals with high 

Metal Melting point Boiling Point Temp (theory) Temp (experiments) Vapor production Pumping Efficiency Peak Power Avg Power
K K K K % W W

Ta 3,290 5,731 3,152 … Nd:YAG laser ablation KrF excimer laser, 10 mJ 0.010% 48 0.16
V 2,183 3,680 2,024 … Nd:YAG laser ablation XeCl excimer laser, 25 mJ 0.001% 7 0.35
Ti 1,941 3,560 1,958 … Excimer laser ablation N2 laser, 0.2-5 mJ, Tunable dye laser, ??? … … …
Fe 1,811 3,135 1,724 973 Iron vaporization, FeBr2 vaporization, laser ablation KrF excimer laser, 34 mJ 0.007% 180 …
Au 1,337 3,129 1,721 383 - 1,923 Gold vaporization, HAuCl4 vaporization Discharge 0.230% 12,000 10
Sn 505 2,875 1,581 1,673 Tin vaporization Discharge 0.002% - 0.200% ~10,000 10
Dy 1,685 2,840 1,562 1,723 Dysprosium vaporization Discharge 0.084% 333 0.08
Cu 1,358 2,835 1,559 673 - 1773 Copper vaporization, CuBr vaporization Discharge 2.900% 305,000 312
Be 1,560 2,744 1,510 773 - 2,273 Beryllium vaporization, BeCl2 vaporization Discharge … 1-10 <1
Al 933 2,740 1,507 473 - 1,773 Aluminum vaporization, AlCl3 / AlBr3 vaporization Discharge ... ... ...
Ga 303 2,676 1,472 773 - 1,673 Nd:YAG laser ablation, GaCl3 / GaBr3 vaporization TEM00 diodes at ~400 nm ... ... <0.06
Ag 1,235 2,435 1,340 873 - 1,425 Discharge, AgBr vaporization Discharge 0.004% 600 0.14
Mn 1,519 2,334 1,284 920 - 1,450 Manganese vaporization, MnCl2 vaporization Discharge 0.200% 24,000 7.4
Tm 1,873 2,223 1,223 1,420 - 1,440 Thulium vaporization Discharge 0.130% 20,800 0.5
Ba 1,000 2,118 1,165 1,120 Barium vaporization Discharge 0.720% 100,000 12.5
Sm 1,345 2,067 1,137 1,873 Samarium evaporation, SmCl3 evaporation (n/a) Discharge, Tunable dye laser ... ... ...
Pb 601 2,022 1,112 1,010 - 1,210 Lead evaporation Discharge 0.090% 34,000 0.9
Eu 1,099 1,802 991 Europium evaporation Discharge 0.300% ... 2.5
Sr 1,042 1,657 911 1,073 Strontium vaporization, SrBr2 vaporization Discharge 7%? 48,333 29.0
Cd 594 1,040 572 523 Cadmium evaporation Discharge 0.400% ... 0.194
K 336 1,032 568 380 Potassium evaporation Diodes 41.140% 230,000 4,200
Rb 312 961 529 386 Rubidium evaporation Diodes 33.000% ... 34,000
Cs 302 944 520 393 Cesium evaporation Diodes 33.000% ... 2,000
Hg 234 630 347 349 Mercury vaporization Discharge, Flashlamp 0.016% 5,520 0.24
I 387 457 251 313 Iodine evaporation Flashlamp 2.000% 3,000,000,000,000 0.67
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evaporation temperatures (Mo, W, Th, U and other) have not yet been demonstrated. In this 

example, AI could be used to elucidate if these specific metals could exhibit vapor lasing at 

specific conditions and vapor production setups. The query starts with the definition of a 

clear objective: “How could metal vapor lasing be demonstrated in refractory metals (Mo, 

W, Th, U…)? What are the key parameters controlling metal vapor lasing in these metals?”. 

Synthesis of AI model outputs has allowed to identify the main demonstration methods for 

metal vapor generation: pulsed pico- and femtosecond laser ablation, electron beam heating, 

chemical vapor transport (metal halides, metal fluorides), and ion beam sputtering. Key 

parameters governing metal vapor lasing turned out to be laser transitions, vapor density 

(1014+ / cm3), vapor pressure related to vapor density, vapor temperature, buffer gas 

composition (He / Ne / Ar), pump wavelength matching atomic absorption lines, pump 

source (tuneable dye lasers, laser diodes, other lasers, electric discharge), upper state lifetime 

(10-9+ s). Afterwards, the objective maximization question is asked: “Which parameter 

values (methods of metal vapor generation, laser transitions, vapor density, vapor pressure, 

vapor temperature, buffer gas composition, pump wavelength matching, pump source, 

upper state lifetime) could enable experimental demonstration of Mo, W, Th, and U metal 

vapor lasers taking into account temperature constraints (optic elements), and what could 

be the experimental setups?”. A panel of AI tools gives multiple answers, which are then 

carefully reviewed and reconciled. Optimal experimental configuration is then selected 

among the options provided. 

Conclusions. The findings presented here illustrate the potential of a multi-model AI 

reasoning framework to accelerate scientific hypothesis testing and refine experimental 

designs in advanced optics. By combining a panel of deep research large language models 

(LLMs), we demonstrated how ensembles of AI systems can surpass individual model 

performance in tackling complex physical inquiries, achieving accuracy gains from 8-27% 

to approximately 48–62%. These improvements were confirmed through iterative 

prompting, data cross-validation, and the strategic integration of domain knowledge. 

In the case studies of diamond Bragg mirrors for keV X‑rays and high-boiling-

temperature metal vapor lasers, multi-model inference facilitated the identification of 

crucial material parameters, boundary conditions, and theoretical limits, while also guiding 
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the design of experimental setups. Specifically, for diamond mirrors, the combined AI 

approach uncovered optimal reflectivities and crystal purity conditions, suggesting that 

near-perfect reflectivity – while attainable in principle – remains constrained by practical 

material imperfections and absorption limits. Likewise, in metal vapor lasers, multi-model 

reasoning revealed key drivers of lasing thresholds and design requirements for sustaining 

high-temperature vapor states. 

These results underscore both the promise and the challenges of AI-driven scientific 

research. On one hand, iterative AI–human interactions can highlight new opportunities for 

hypothesis generation and testing, boosting efficiency in fields where physical experiments 

are time-consuming and resource-intensive. On the other hand, thorough verification of AI 

outputs remains essential. Model correlations, shared biases, and potential “hallucinations” 

necessitate domain-expert oversight and well-designed prompts that confront AI with 

updated facts, boundary checks, and iterative follow-up questions. 

Overall, this study indicates that AI systems can serve as potent collaborators in 

science, guiding researchers toward higher-accuracy theoretical predictions and 

experimental designs in less time. Future work should further examine the independence of 

different AI models, develop more robust strategies to mitigate correlated errors, and 

integrate domain-specific constraints that help sustain validity when extrapolating beyond 

existing knowledge. By merging multi-model AI reasoning with human expertise, 

researchers can unlock more rapid, rigorous, and creative solutions in emerging frontiers of 

optics, materials science, and beyond. 
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