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Abstract. This study explores the transformative role of artificial intelligence (Al)
tools in accelerating scientific hypothesis validation, focusing on the iterative use of
reasoning and deep research large language models (LLMs). We classify LLMs into
single-step, multi-step reasoning, and web-integrated deep research variants,
demonstrating that ensembles of independent models enhance accuracy
probabilistically from 8-27% for individual reasoning models to 48-62% for collective
inference, when addressing complex physical queries. To illustrate the approach of
collective Al inference, we examine case studies of diamond Bragg mirror reflectivity
for keV-scale X-rays and metal vapor lasing for high-boiling-temperature metals. By
iteratively prompting six LLMs with tailored queries and peer-reviewed data, we derive
optimized theoretical results and experimental setups. The results underscore the
ability of LLMs to accelerate scientific hypothesis testing, identify theoretical limits,
and design experimental configurations while also highlighting the importance of
verifying Al outputs, confronting Al with facts and follow-up questions, and
accounting for Al model correlations. This framework pioneers a paradigm shift in
interdisciplinary research, merging Al-driven reasoning with domain-specific
expertise to resolve ambiguities in cutting-edge material science and photonics.
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Introduction. Artificial intelligence has already found multiple applications in
business — such as chatbots, image and pattern recognition, personalized marketing,
healthcare disease detection and drug discovery, language processing, fraud detection,
content creation, and energy management. Academic applications of Al are also
emerging, particularly in data analysis (including pattern recognition, data mining, and
statistical analysis), academic writing (such as style and grammar correction,
translation, and plagiarism detection), and personalized tutoring. Typical accuracies of
Al models in specialized applications are already high. For example, in natural
language processing for translation, DeepL achieved 89% [1] accuracy in 2020, while
Google Translate reached 86% in 2020 [1] and 80% [2] in 2022.

Scientific research is a relatively new field for artificial intelligence. Due to the
inherent complexity of scientific research, both in breadth and depth, Al tools were not
widely applied to it until around 2024. However, the emergence of large language
models (LLMs) in 2022 has opened an entirely new class of Al applications in natural
language processing. These applications include creating new scientific hypotheses,
quickly testing hypotheses, identifying arguments and dependencies, stimulating
creative thinking, comparing the outputs of various LLMs, synthesizing multiple
arguments through reasoning, and selecting arguments that might explain observed
physical processes. This work summarizes the current state of the most advanced
LLMs, their potential applications in scientific hypothesis creation and testing, and
proposes multi-model Al reasoning (MMAR) framework as a viable approach to
improve the accuracy of human-guided scientific Al inference towards record 48-62%.

Literature Analysis and Problem Statement. The advancement of Large
Language Models (LLMs) has catalyzed their adaptation for scientific reasoning,
yielding distinct classes optimized for hypothesis testing and research workflows.
These classes — single-step, reasoning, and deep research LLMs — differ fundamentally
in their architectures, operational methodologies, and performance in scientific tasks.
Single-Step Inference LLMs, such as GPT-3 [3][4], GPT-3.5, GPT-4, and GPT-4o,
represent the foundational paradigm of language models. These systems generate

responses in a single pass, relying exclusively on static, pre-defined training datasets.
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While they excel at addressing straightforward queries with rapid responses and broad
domain knowledge, their reliance on fixed datasets limits their utility in dynamic
scientific contexts. Errors in complex reasoning tasks often arise due to the absence of
iterative validation, and their knowledge remains confined to information available up
to their training cutoff dates. Despite these constraints, single-step LLMs remain
widely used for basic question-answering and preliminary data interpretation.
Reasoning LLMs enhance this framework by incorporating iterative, multi-step
reasoning processes [5]. Unlike their single-step counterparts, these models —
exemplified by OpenAl ol, 03, DeepSeek — employ techniques like chain-of-thought
prompting [5], where each step of reasoning builds on prior outputs. This cumulative
approach allows for incremental validation, significantly improving accuracy in tasks
requiring abstraction, causal inference, or counterfactual analysis. However, the
computational demand escalates with reasoning depth, and errors in early steps may
propagate through subsequent stages [6]. Despite these trade-offs, reasoning LLMs
demonstrate superior performance in hypothesis testing and experimental design
compared to single-step systems. The most advanced class, Deep Research LLMs [7],
integrates multi-step reasoning with real-time external data retrieval. These models,
including OpenAl’s o3-based DeepResearch, Perplexity’s DeepSeek RI1 Deep
Research, and Grok 3 xAI’s DeeperSearch, dynamically formulate search strategies by
identifying key concepts within user queries. By accessing up-to-date scientific
literature, clinical trials, or experimental datasets, they address the temporal limitations
of static training data. This fusion of iterative reasoning and evidence-based validation
achieves the highest accuracy in tasks such as literature synthesis, hypothesis
generation, and experimental planning. For instance, Grok 3’s multi-agent framework
stress-tests hypotheses against conflicting data, while DeepSeek R1 optimizes search
strategies for precision. However, their efficacy depends on the reliability of external
sources and incurs higher computational costs and latency. Table 1 summarizes key
characteristics of leading Deep Research LLLMs available on the market as of March

2025 [9].
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Table 1.
Accuracy of Deep Research LLMs with Reasoning and Web Search

Functionality
Search features Accuracy Pricing
Player Model Files Web Correct Incorrect  Monthly
search o o $
OpenAl  Deep Research + + 26.6% 73.4% 200
Perplexity Deep Research + + 21.1% 78.9% 20
xAl Grok 3 DeeperSearch + + 13.0% 87.0% 30
MiniMax DeepSeek R1 + + 9.4% 90.6% 0
DeepSeek DeepSeek R1 + - 8.9% 91.1% 20
Alibaba  QwQ 32B + + 8.2% 91.8% 0
Gemini 2.5 Pro Deep Research - + 5.3% 94.7% 0

Deep Research LLMs, leveraging dynamic data and multi-step workflows, attain
the highest accuracy and adaptability to evolving scientific knowledge. Deep Research
LLMs, such as Perplexity’s Deep Research, exemplify the potential of democratizing
the access to advanced inference, balancing high accuracy, computational efficiency,
and cost. In the next section, we will demonstrate how combining Deep Research Al
models can significantly enhance reasoning accuracy compared to individual models.

Research Methodology. The integration of multiple Deep Research Large
Language Models (LLMs) represents a promising paradigm for improving accuracy in
complex scientific reasoning tasks, particularly under conditions of uncertainty or
incomplete data. This approach leverages probabilistic principles to mitigate individual
model limitations, with implications for hypothesis validation, experimental design,
and high-stakes decision-making. The ensemble efficacy arises from probability
theory: For N independent models, each demonstrating a per-query accuracy of X;, the

probability that at least one model produces a correct answer is given by:

N

Pensemble =1- H (1 - Xz)
=1

This framework exponentially outperforms single-model accuracy when N > 1.
However, there are critical caveats. First, models must exhibit independence to ensure
errors remain uncorrelated (i.e., no shared training biases or data artifacts). Second, this

logic applies exclusively to binary outcomes, where responses are categorically correct



98
or incorrect. A third requirement is static per-query accuracy, meaning model
performance does not degrade with sequence length or task complexity.
To contextualize these principles, consider the Humanity’s Last Exam benchmark
— a simulated high-difficulty scientific reasoning test [8]. Empirical results demonstrate
that an ensemble of the top six models (with accuracies as listed in Table 1) achieves a
combined accuracy of 62%, while excluding computationally expensive and costly
OpenAl Deep Research model reduces this to 48%. Individual models exhibit modest
accuracy (5.3 — 26.6%), but strategic ensemble combinations yield disproportionate
gains. Notably, the 62% ensemble accuracy surpasses the best single-model
performance by 35%, aligning with theoretical predictions.
Table 2.
Theoretical Combined Accuracy of Top 6 Deep Research LLMs with

Reasoning and Web Search Functionality

Search features Accuracy Pricing
Player Model Files Web Correct Incorrect  Monthly
search o o $
Top 6 models + + 61.8% 38.2% 270
Top 6 models excl. OpenAl + + 48.0% 52.0% 70

Implementation Framework

The initial step involves the identification and clear delineation of the research
objective. This is achieved through an extensive review of the existing literature, ensuring
that the objective is both well-founded and contextually relevant. A panel of Al tools is
then employed to determine the key drivers that are critical to achieving or maximizing
the stated objective. These drivers represent the primary variables or conditions that may
influence the outcome of the hypothesis validation process. The outputs from the various
Al tools are synthesized to compile an exhaustive list of drivers. This comprehensive list
forms the basis for subsequent analytical steps and ensures that all relevant factors are
considered. Utilizing the complete list of drivers, a targeted prompt is developed with the
explicit goal of optimizing the pathway to the stated objective. The prompt is designed to
guide the Al models toward generating outputs that directly address the interplay of the

identified drivers. The responses produced by the Al models are systematically analyzed
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to identify convergence and divergence in the generated solutions. When outputs converge
with minimal discrepancies, the result is interpreted as a viable solution, warranting further
validation by a human expert. Conversely, if discrepancies or gaps are observed — where
the Al tools provide conflicting responses — these gaps are documented for further
analysis. In cases where discrepancies are present, the framework prescribes an iterative
approach. The prompt is modified to explicitly incorporate the identified gaps, and the
refined prompt to maximize the objective taking into account the gaps is reintroduced into
the Al analysis cycle. This process is repeated. If subsequent iterations yield convergent
responses or successfully bridge the gaps, the solution is considered validated and may
serve as a working hypothesis to be presented to a human expert. If significant
discrepancies persist despite iterative refinements, it may be concluded that a solution is

not attainable with the current set of Al tools. Fig. 1 shows the approach.
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Fig. 1. Al-Assisted Process for Validating Scientific Hypotheses

Case 1: Single Crystal Diamond Bragg Mirror Reflectivity for keV X-rays

The development of high-reflectivity X-ray optics faces significant challenges due
to the stringent material requirements for manipulating high-energy photons. While
Mo/Si, Mo/B4C, Ru/B4C, W/C, W/Be, Si/C mirrors achieve 70-90% reflectivity [11],
[12], [13] at grazing angles of incidence in the extreme ultraviolet (EUV) range (e.g., 13
nm lithography systems) and X-ray range, dielectric mirrors in the near-infrared (NIR)
exhibit near-perfect reflectivity (99.9998%) with transmission, scattering, and absorption
losses as low as 1.6 ppm [14], [15]. Recent advances in single-crystal diamond Bragg
mirrors have demonstrated exceptional reflectivity (>99%) for keV-scale X-rays at near-
normal incidence [16], enabling novel applications in X-ray free-electron laser oscillators

(XFELOs) and coherent X-ray pulse stacking. However, the theoretical upper bounds of
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diamond reflectivity remain unresolved due to complexities in the dynamic theory of
Bragg diffraction. To address this, a multi-model artificial intelligence (Al) framework
was deployed to systematically evaluate hypotheses governing diamond mirror
performance.

A panel of Al Deep Research models — Perplexity Deep Research, MiniMax
DeepSeek-R1, Grok 3 DeeperSearch, and OpenAl 03-mini — was leveraged to analyze
critical variables influencing single crystal diamond Bragg mirror performance.
Specialized prompts were iteratively refined to query dominant drivers of reflectivity,
including material properties (high Debye temperature, low atomic number of diamond),
structural perfection (dislocation density), X-ray energy (higher energy implies lower
photoelectric absorption and Compton scattering), crystal geometry (sufficient thickness
to reflect more than 99% of X-rays, Bragg reflection choice), operating conditions
(temperature minimizing lattice vibrations, narrow X-ray bandwidth to fit with the Bragg
reflection), isotopic purity ("?C single crystal diamond has slightly higher Debye
temperature and lower lattice vibrations).

Having identified all possible drivers of diamond mirror reflectivity, research
strategy was focused at estimating theoretical limits under idealized conditions (zero
dislocation density, cryogenic operating temperatures, isotopic '?C purity, sufficient
thickness, right choice of the Bragg reflection, narrow X-ray bandwidth to fit the Bragg
reflection). This translated into estimating minimum extinction length and highest
absorption length to maximize reflectivity according to a classic formula:

3m Lext
- Labs

<RH> ~1-—

A prompt “What are the absorption and extinction lengths (mm) of ideal '>C diamond
at 77K cryogenic temperature with zero dislocation density for 23.765 keV, 13.903 keV,
31 keV, 35 keV, 44 keV X-rays?” was created. Inputs included peer-reviewed studies of
Shvyd’ko et al., 2011 [16], computational datasets from the NIST X-ray mass attenuation
database, and dynamical diffraction theory. Model responses were cross validated
according to the methodology (Fig. 1). According to the models, the maximum attainable

reflectivity of a diamond X-ray Bragg mirror in backscattering (normal-incidence Bragg
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geometry) is achieved at 13.903 keV and is estimated at 99.97% (Grok-3 Think). This
compares to 99.10% reflectivity actually measured at 13.903 keV, as experimentally
demonstrated in [16]. Such a high reflectivity of 99.97% could theoretically enable multi-
pass resonators sustaining high efficiency for more than 1,000 passes.

Case 2: Metal Vapor Lasers

Metal vapor lasers were among the first types of lasers discovered in the 1950s and
1960s, alongside dye and semiconductor lasers. Although other types of lasers — such as
CO: lasers, fiber lasers, and diode-pumped solid-state lasers have since captured a larger
share of the market, metal vapor lasers remain highly valued. They offer a wide range of
over 480 different wavelengths, spanning from 224 nm to 6,457 nm, along with pulse
durations in the nanosecond range, very narrow spectral lines for precise wavelength
control, and high pulse repetition rates of several kilohertz. Laser emission has been
observed in a total of 32 metals and 3 nonmetals, including Ag, Al, As, Au, Ba, Be, Bi,
Ca, Cd, Cs, Cu, Dy, Eu, Fe, Ga, Hg, I, K, Mg, Mn, Na, Pb, Rb, Se, Sm, Sn, Sr, Ta, Te, Ti,
Tl, Tm, V, Yb, and Zn [17].

Table 3.

Sample Characteristics of Metal Vapor Lasers

Metal Melting point  Boiling Point Temp (theory) Temp (experiments) Vapor production Pumping Efficiency Peak Power Avg Power
K K K K % w w
Ta 3,290 5731 3,152 . Nd:YAG laser ablation KrF excimer laser, 10 mJ 0.010% 48 0.16
\ 2,183 3,680 2,024 . Nd:YAG laser ablation XeCl excimer laser, 25 m) 0.001% 7 0.35
Ti 1,941 3,560 1,958 . Excimer laser ablation N2 laser, 0.2-5 mJ, Tunable dye laser,
Fe 1,811 3,135 1,724 973 Iron vaporization, FeBr2 vaporization, laser ablation KrF excimer laser, 34 mJ 0.007% 180
Au 1337 3,129 1,721 383 - 1,923 Gold vaporization, HAuCl4 vaporization Discharge 0.230% 12,000 10
Sn 505 2,875 1,581 1673 Tin vaporization Discharge 0.002% - 0.200% ~10,000 10
Dy 1,685 2,840 1,562 1723 Dysprosium vaporization Discharge 0.084% 333 0.08
Cu 1358 2,835 1,559 673 - 1773 Copper vaporization, CuBr vaporization Discharge 2.900% 305,000 312
Be 1,560 2,744 1510 773 -2,273 Beryllium vaporization, BeCl2 vaporization Discharge 1-10 <1
Al 933 2,740 1,507 473 - 1,773 Aluminum vaporization, AICI3 / AIBr3 vaporization Discharge -
Ga 303 2,676 1472 773 - 1,673 Nd:YAG laser ablation, GaCl3 / GaBr3 vaporization TEMOO diodes at ~400 nm - <0.06
Ag 1,235 2,435 1,340 873 - 1,425 Discharge, AgBr vaporization Discharge 0.004% 600 0.14
Mn 1,519 2,334 1,284 920 - 1,450 Manganese vaporization, MnCI2 vaporization Discharge 0.200% 24,000 74
Tm 1,873 2,223 1,223 1,420 - 1,440 Thulium vaporization Discharge 0.130% 20,800 0.5
Ba 1,000 2,118 1,165 1,120 Barium vaporization Discharge 0.720% 100,000 12.5
Sm 1,345 2,067 1,137 v 1,873 Samarium evaporation, SmCI3 evaporation (n/a) Discharge, Tunable dye laser . -
Pb 601 2,022 1112 1,010 - 1,210 Lead evaporation Discharge 0.090% 34,000 0.9
Eu 1,099 1,802 991 Europium evaporation Discharge 0.300% - 2.5
Sr 1,042 1,657 911 1,073 Strontium vaporization, SrBr2 vaporization Discharge 7%? 48,333 29.0
cd 594 1,040 572 523 Cadmium evaporation Discharge 0.400% . 0.194
K 336 1,032 568 380 Potassium evaporation Diodes 41.140% 230,000 4,200
Rb 312 961 529 386 Rubidium evaporation Diodes 33.000% - 34,000
Cs 302 944 520 393 Cesium evaporation Diodes 33.000% - 2,000
Hg 234 630 347 349 Mercury vaporization Discharge, Flashlamp 0.016% 5,520 024
| 387 457 251 313 lodine evaporation Flashlamp 2.000% 3,000,000,000,000 0.67

However, the energy conversion efficiencies of metal vapor lasers are relatively low,
ranging from 0.01% to 2.9%, except in the case of alkali vapor lasers, for which efficiencies
of 33-41% have been demonstrated [18][19]. In addition, due to constraints of optical

materials (mirrors, lenses, Brewster plates), lasing in some refractory metals with high
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evaporation temperatures (Mo, W, Th, U and other) have not yet been demonstrated. In this
example, Al could be used to elucidate if these specific metals could exhibit vapor lasing at
specific conditions and vapor production setups. The query starts with the definition of a
clear objective: “How could metal vapor lasing be demonstrated in refractory metals (Mo,
W, Th, U...)? What are the key parameters controlling metal vapor lasing in these metals?”’.
Synthesis of Al model outputs has allowed to identify the main demonstration methods for
metal vapor generation: pulsed pico- and femtosecond laser ablation, electron beam heating,
chemical vapor transport (metal halides, metal fluorides), and ion beam sputtering. Key
parameters governing metal vapor lasing turned out to be laser transitions, vapor density
(10"+ / cm®), vapor pressure related to vapor density, vapor temperature, buffer gas
composition (He / Ne / Ar), pump wavelength matching atomic absorption lines, pump
source (tuneable dye lasers, laser diodes, other lasers, electric discharge), upper state lifetime
(10°+ s). Afterwards, the objective maximization question is asked: “Which parameter
values (methods of metal vapor generation, laser transitions, vapor density, vapor pressure,
vapor temperature, buffer gas composition, pump wavelength matching, pump source,
upper state lifetime) could enable experimental demonstration of Mo, W, Th, and U metal
vapor lasers taking into account temperature constraints (optic elements), and what could
be the experimental setups?”. A panel of Al tools gives multiple answers, which are then
carefully reviewed and reconciled. Optimal experimental configuration is then selected
among the options provided.

Conclusions. The findings presented here illustrate the potential of a multi-model Al
reasoning framework to accelerate scientific hypothesis testing and refine experimental
designs in advanced optics. By combining a panel of deep research large language models
(LLMs), we demonstrated how ensembles of Al systems can surpass individual model
performance in tackling complex physical inquiries, achieving accuracy gains from 8-27%
to approximately 48-62%. These improvements were confirmed through iterative
prompting, data cross-validation, and the strategic integration of domain knowledge.

In the case studies of diamond Bragg mirrors for keV X-rays and high-boiling-
temperature metal vapor lasers, multi-model inference facilitated the identification of

crucial material parameters, boundary conditions, and theoretical limits, while also guiding
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the design of experimental setups. Specifically, for diamond mirrors, the combined Al
approach uncovered optimal reflectivities and crystal purity conditions, suggesting that
near-perfect reflectivity — while attainable in principle — remains constrained by practical
material imperfections and absorption limits. Likewise, in metal vapor lasers, multi-model
reasoning revealed key drivers of lasing thresholds and design requirements for sustaining
high-temperature vapor states.

These results underscore both the promise and the challenges of Al-driven scientific
research. On one hand, iterative Al-human interactions can highlight new opportunities for
hypothesis generation and testing, boosting efficiency in fields where physical experiments
are time-consuming and resource-intensive. On the other hand, thorough verification of Al
outputs remains essential. Model correlations, shared biases, and potential ‘“‘hallucinations”
necessitate domain-expert oversight and well-designed prompts that confront Al with
updated facts, boundary checks, and iterative follow-up questions.

Overall, this study indicates that Al systems can serve as potent collaborators in
science, guiding researchers toward higher-accuracy theoretical predictions and
experimental designs in less time. Future work should further examine the independence of
different Al models, develop more robust strategies to mitigate correlated errors, and
integrate domain-specific constraints that help sustain validity when extrapolating beyond
existing knowledge. By merging multi-model Al reasoning with human expertise,
researchers can unlock more rapid, rigorous, and creative solutions in emerging frontiers of
optics, materials science, and beyond.
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