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Abstracts. The monograph is devoted to a comprehensive analysis of the
implementation of artificial intelligence (Al) in various fields of chemistry. The work
considers modern directions of Al application for the discovery of new drugs,
development of innovative materials, prediction of chemical reactions, automation of
laboratory experiments, spectroscopy and analytical chemistry. The benefits of using
deep learning, machine learning algorithms, and generative models, as well as the
challenges associated with data quality, ethics, and model interpretability, are analyzed
in detail. Particular attention is paid to the evolution of Al in chemistry, the current
state of research, and predictions for integration with other technologies, including
robotics and quantum computing. The monograph aims to facilitate interdisciplinary
dialog between chemists, computer scientists, and industry representatives for the
effective implementation of Al in chemical research.
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Introduction. The rapid development of science and technology puts more and
more difficult tasks before chemical research. The need to accelerate the opening of
new medicines, the development of innovative materials with unique properties,
optimization of chemical processes and the analysis of huge amounts of data requires
new approaches and tools. One of these promising areas is the use of artificial
intelligence (Al). Artificial intelligence is defined as the ability of machines to simulate
cognitive functions of a person, such as learning, solving problems and decision -

making. The main sub -sectors of the Al include machine learning (MN) and deep
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training (GN). Unlike traditional computer programs that apply to clearly defined rules,
Al systems are designed in such a way as to understand the relationships between data
and find new solutions for complex problems. Machine training, in turn, includes
various paradigms, including teaching with the teacher (based on labeled data),
learning without a teacher (identifying patterns in unmarked data) and training with
reinforcement (training based on rewards and punishments) [4, 12].

The relevance of the use of Al in chemistry is emphasized by the fact that the
International Union of Theoretical and Applied Chemistry (IUPAC) has recognized as
one of the ten most promising technologies in chemistry in 2023 4. This report is
intended to provide a comprehensive review of the current state and prospects for the
development of artificial intelligence in various fields of chemistry. The report will
consider the use of Al to open and develop new medicines, in material science, to
forecast chemical reactions, in spectroscopy and other analytical methods, as well as
to analyze the advantages and disadvantages of using Al in chemical research and
future trends in this field [7, 16].

In addition to the above areas, an important aspect of the use of Al in chemistry
is the automation of laboratory experiments using robotic systems guided by machine
learning algorithms. Such "smart laboratories" are able to plan experiments
independently, analyze the results in real time and adapt further actions to achieve
optimal results. This not only reduces the time and cost of research, but also reduces
the likelihood of human mistake [2, 18].

Also popular is the use of artificial intelligence to interpret large volumes of
spectroscopic, chromatographic and mass spectrometric data. Due to the ability to
identify hidden patterns in complex data kits, Al algorithms help to identify substances
more accurately and faster, to predict their activity or toxicity, which is especially
valuable in pharmaceutical and environmental chemistry. Another promising area is
the development of new catalysts with given properties. With the use of Al it is
possible to model the surface of the catalyst at the atomic level and to predict its activity
in different conditions. This opens up new opportunities for green chemistry and

sustainable development, where process efficiency is critical [4, 7].
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However, despite all the advantages, the introduction of Al in chemistry is
accompanied by certain challenges. These include the need for large and high -quality
data training arrays, limited interpretability of some algorithms, as well as ethical issues
related to autonomy decision -making. To overcome these difficulties, an
interdisciplinary approach that combines knowledge in chemistry, computer science,
statistics and ethics 1s important [6, 15].

As aresult, the development of artificial intelligence opens a new era in chemical
research. Its integration into scientific processes can accelerate the discovery of new
substances, improve understanding of complex reactions and make chemical science
more effective, safe and focused on the future [9, 11].

The use of artificial intelligence in chemistry has gone a significant path of
evolution, from early conceptual developments to modern rapid implementation in
various research and industrial processes. Particularly noticeable is the increase in
interest and activity in this field after 2015, which is reflected in a significant increase
in the number of publications and patents related to the use of Al methodologies in
chemistry. Thanks to the Al, researchers were able to process and analyze data at such
a pace that would be impossible when using traditional manual methods, which would
take decades manually. To date, artificial intelligence is widely used in many key areas
of chemical research. Among them is an important place to predict the various
properties of molecules, such as bioactivity, toxicity, solubility and stability. Al is also
actively used to develop new molecules with predetermined properties, which is critical
for the creation of innovative medicines and materials. In addition, Al algorithms are
used to predict the results of chemical reactions, optimize the conditions of their
conduct, as well as to analyze complex spectral data, which significantly increases the
efficiency of experimental work [1, 14].

CAS Content Collection plays an important role in understanding and
contextualization of the modern landscape. CAS is a recognized leader in the field of
scientific information decisions, making the customization, binding and analysis of
valuable data published in scientific literature around the world, in order to accelerate

scientific breakthroughs. The CAS Scientists and Experts Team uses CAS Content
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Collection, the world's largest chemical library for classification and quantitative
evaluation of all chemical publications related to Al, from 2000 to 2020. [2, 15].

The rapid increase in the use of Al in chemistry after 2015 indicates qualitative
changes in approaches to chemical research. This turning point is probably related to
the progress in the development of more powerful deep learning algorithms and a
significant increase in computational capacity. The analysis of the dynamics of
publications demonstrates exponential growth after this period, which correlates with
the general tendency of development of deep learning in other scientific fields. It is at
this time that deep learning models have reached a level of maturity sufficient for
effective use to complex chemical data. In addition, chemistry disciplines, in which the
level of implementation of Al remains relatively low, can represent significant
opportunities for future research and innovation. If certain areas of chemistry are
lagging behind in the use of Al, it may indicate the undisclosed potential to increase
the efficiency, accuracy and speed of research processes in these areas. Detection and
elimination of obstacles that interfere with the introduction of Al in such disciplines
can lead to significant scientific breakthroughs and discoveries [11, 17].

The traditional process of developing new medicines is extremely long, expensive
and is characterized by a high level of failure. Usually, from identifying a potential target
to the release of the drug to the market is over ten years, and the cost of developing one
successful medicinal product can reach billions of dollars. In this case, much of the
candidates for the medicine fail in the stages of preclinical or clinical trials. Artificial
intelligence plays an increasingly important role in accelerating and improving the
efficiency of each stage of this complex process. At the stage of targeting and validation,
the Al algorithms are able to analyze huge volumes of biological data, such as genomic
and proteom data, to detect molecular targets (eg, proteins or genes) related to diseases.
An excellent example is the use of the DeepMind Alphafold tool that has revolutionized
the three -dimensional protein structure, which is critical for understanding their function
and developing medicines that interact with these proteins [14, 17].

In the field of design and optimization of Al molecules, it helps to generate new

molecular structures with the desired properties. To represent molecules, a simplified
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system of introduction of molecular rows (SMILES) is used, which allows the Al
algorithms to process chemical structures as text 9. Generative models, such as variational
auto codes (VAE) and generative-magnifying networks (GAN) are used to create new
molecules. Al is also effectively used to predict the properties of molecules, including
their solubility, toxicity and bioactivity. For this purpose models of quantitative ratio of
structure-activity (QSAR) are developed, which establish the relationship between the
chemical structure of the compound and its biological activity [3].

Results of the study. At the stage of virtual screening and identification of medical
massacles, the Al helps to predict the interaction of potential medicinal products with
target proteins 7. There are different approaches to predicting interactions, including
methods based on the analysis of features of molecules and their similarity, as well as deep
learning methods, such as Deeepdta, Padda, WEAPTA, WEDDA. Al also finds the use in
clinical trials, where it is used to optimize research protocols, selection of patients, forecast
treatment results and identify potential side effects. For example, a Trialgpt algorithm has
been developed to help select potential volunteers to participate in clinical trials. Another
important area is the re -profiling of medicines, that is, the search for new therapeutic
applications for existing medicines. For this purpose, machine learning methods are used
that analyze large amounts of data on medicines, diseases and their relationships, for
example, the "Guilt by Association" approach [1, 8].

The Lab in Lab in A Loop concept involves the integration of the generative Al
into all stages of drug development. Data obtained in the laboratory and during clinical
trials are used to teach Al models, which then generate new hypotheses and forecasts
for potential medicinal targets and molecules that are again checked experimentally,
creating a continuous cycle of improvement [2].

There are already many examples of successful use of Al in the discovery of
medicines. Among them is the detection of a new antibiotic capable of combating
bacteria resistant to medicines; identification of potential methods of treatment of rare
genetic disorders; development of exscientia drug from obsessive-compulsive
disorder; use of Benevalentai to detect Baricitinib as a possible treatment for Covid-

19; and the use of Alphafold to identify new genes associated with lateral amyotrophic
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sclerosis (BAS) [4].

It 1s important to note that Al not only significantly accelerates the process of
developing medication, but also increases the likelihood of success of clinical trials.
Studies show that drugs found by Al have a higher percentage of success in the first
phase of clinical trials compared to drugs developed by traditional methods. This
indicates that Al helps to more effectively select promising candidates in the early
stages [4, 7].

Despite significant successes, a number of problems related to the quality and
availability of data, ethical considerations on their use and transparency and
interpreting models of Al need to be fully realized in the development of medicinal
products in the development of medicines. The quality of data is critically important
for teaching effective models, and ethical aspects and transparency of decision -making
models need special attention to ensure confidence and responsibility [4, 7].

Traditional methods for developing new materials are often slow and largely
dependent on experiments conducted by trial and error. Finding materials with certain
characteristics, such as durability, electrical conductivity or heat resistance, can take
considerable time and require a lot of resources. Artificial intelligence plays an
increasingly important role in accelerating the discovery and development of new
materials with predetermined properties. One of the key areas is to predict the properties
of materials, including their mechanical, electronic, magnetic and thermal characteristics.
Various machine learning algorithms, including graphic neural networks (GNN) and
physically sound neural networks (Pinn) are used for this purpose [2, 6].

An approach known as material science based on data informatics involves the use
of Al algorithms to analyze large arrays of data on existing materials to identify patterns
and to predict the behavior of new, not yet synthesized compounds. Al also contributes to
the development of reverse design, when the purpose is to design materials with
predetermined properties. An example of this approach is the Microsoft Mattergen tool
developed, which uses generative models to create new materials with the desired
characteristics. Generative models of Al, such as DeepMind Gnome and diffusion models,

are not only able to predict properties, but also to offer completely new materials with
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given characteristics. Gnome, for example, has already discovered hundreds of thousands
of new stable materials, including potential superconductors [4, 7].

There are already a number of examples of materials designed or open by artificial
intelligence. Among them is nanomaterial, which is light as foam, but strong as steel; new
materials for improved energy -intensive batteries; materials for effective carbon capture;
and high energy density and heat resistance polymers for use in condensers [14, 17].

An important advantage of using Al is the ability not only to predict the properties
of existing materials, but also to carry out the so -called "reverse design". This means
that researchers can start with the desired characteristics of the material and use Al
algorithms to determine the optimal chemical structure and composition that would
provide these properties. The traditional approach to the development of materials has
often been the synthesis and study of the properties of existing or random compounds.
The reverse design with the help of Al opens the path to purposeful creation of
materials for specific needs and use [10, 15].

However, despite the considerable potential of Al in materials science, one of the
main obstacles to its wider application remains the problem of lack of quality and
sufficient data for training models. Effective learning of machine learning algorithms
requires large and various data sets on materials properties, their structure, composition
and conditions of synthesis. Collection and preparation of such data is a complex and
often expensive process. The development and use of generative models, as well as
data of data, can be a partial solution to this problem, allowing you to create synthetic
data to expand the training sets [14, 17].

Accurate forecasting of chemical reactions and their products is extremely
important for many sectors of chemistry, including organic synthesis, drug
development and material science. Traditional forecasting methods are often dependent
on the knowledge and intuition of experienced chemists, which can be time -pointed
and not always accurate. Artificial intelligence, especially machine training, offers
powerful tools for predicting chemical reactions, conditions of their conduct and
possible by -products. Smiles system is often used to represent molecules and chemical

reactions. Popular models of "sequence-sequence" (SEQ2SEQ) and architecture based
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on transformers, which have demonstrated high efficiency in the tasks of forecasting
chemical reactions. Al is also used to predict thermochemical parameters of reactions,
which is important for understanding their energy [6, 20].

The Chemreactome Platform, developed by Cambridge University researchers
together with Pfizer, is an example of a successful combination of automated
experiments and artificial intelligence to predict chemical reactions 68. There are also
specialized Als, such as IBM RXN for CHEMISTRY . offer synthetic paths. A special
place is the use of Al in retrosynthesis, that is, in the automated planning of synthetic
pathways to obtain target molecules. There are different types of retrosynthesis models,
including template, semi -shaped and cumulative methods. Research on integration of
machine learning with chemical works for automation of experimental processes is also
underway [4, 7].

Al is also used to predict optimal conditions of reactions, such as temperature,
pressure, type of catalyst and solvent. There are a number of successful examples of
using Al to predict chemical reactions. For example, a model of machine learning has
been developed to predict catalytic oxidation products on the gold surface with an
accuracy of up to 93%. The IBM RXN platform is successfully used to predict the
results of organic reactions. Chemreactome platform demonstrates significant progress
in understanding chemical reactivity and reactions predicting. It is important to note
that Al not only helps to predict the results of already known reactions, but also
contributes to the discovery of new reactionary pathways and deepening understanding
of the fundamental principles of organic chemistry [15, 17].

Not only the choice of the appropriate algorithm of artificial intelligence, but also
the quality and representativeness of the data on which the model is studied, is crucial
for the effective forecasting of chemical reactions. The accuracy of Al forecasts
depends directly on how well the model was trained in various and high quality
chemical reactions. Insufficiency or bias of educational data can lead to inaccurate or
incomplete forecasts, which emphasizes the importance of careful selection and
preparation of data for teaching models of machine learning in chemistry [8, 22].

Traditional methods of spectroscopy and analytical chemistry are often time -
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consuming and require deep expert knowledge for the proper interpretation of the data
obtained. The process of analyzing spectra and identification of compounds can be long
-lasting and prone to subjective errors [14, 17].

Artificial intelligence offers significant opportunities to automate the analysis of
spectral data, improve the accuracy of compound identification, and gain new, deeper
insights in chemical research. In the field of nuclear magnetic resonance (NMR), Al is
used to predict chemical shifts, model spectra, structurally identify unknown compounds,
and analyze complex mixtures. In mass spectrometry (MS), Al is used to identify and
quantify compounds, in proteomics and metabolomics, and to analyze data from large
repositories. In infrared (IR) and Raman spectroscopy, machine learning helps to identify
functional groups, perform qualitative and quantitative analysis, and is used for medical
diagnostics. In chromatography (gas, liquid, liquid chromatography-mass spectrometry),
Al is used to optimize separation conditions, identify peaks, and quantify components of
mixtures. In X-ray diffraction (XRD), Al algorithms help in phase identification and
crystal structure determination of materials [4, 7].

There are also intelligent material analysis systems, such as ZEISS ZEN core, that
use artificial intelligence to automatically recognize material properties. An interesting
application of Al is to predict the chemical composition of substances based on the
analysis of their photographs, which can be used in various fields, including forensics
and environmental monitoring [9, 17].

The use of Al in spectroscopy and analytical chemistry not only automates routine
procedures, but also identifies complex, non-obvious patterns in the data, leading to
deeper insights that were previously unavailable to researchers 8. The ability of Al
algorithms to process large volumes of heterogeneous data and recognize subtle
relationships between spectral characteristics and chemical structure of compounds
opens up new opportunities for in-depth understanding of complex chemical systems
and processes [14, 21].

However, for the successful application of Al in spectroscopy and other analytical
methods in chemistry, it is critical to have large, high-quality, and properly annotated

datasets to train machine learning models. The effectiveness of Al models directly
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depends on the quality of the data they are trained on. Collecting and preparing such
data can be a complex and resource-intensive task, but it is a key factor in achieving
high accuracy and reliability of the analysis results [4, 7].

The use of artificial intelligence in chemical research offers significant
advantages. Al can significantly accelerate the pace of scientific discovery and
development by quickly analyzing large amounts of data and identifying potential new
compounds and materials. It also leads to increased efficiency and productivity of
research processes, optimization of reaction conditions, and automation of routine
tasks. Due to the high accuracy of data analysis, Al helps to identify subtle patterns
and connections that may be missed by humans, which contributes to the discovery of
more effective compounds and materials. The use of Al can also significantly reduce
research and development costs by reducing the need for manual labor and increasing
the accuracy of predictions. In addition, Al plays an important role in promoting green
chemistry and sustainable practices by helping to predict the environmental impact of
new chemicals and materials. Overall, Al is expanding the possibilities for developing
new medicines and materials with desirable properties, opening up new horizons in
chemical science and industry [9, 20].

However, the use of Al in chemical research i1s also associated with certain
disadvantages and challenges. One of the main drawbacks is the dependence on the
quality and quantity of training data. Al models require large amounts of high-quality
data to perform effectively; insufficient or poor quality data can lead to inaccurate
results. The “black box” problem, where it is difficult to understand how an Al model
makes decisions, is also a significant challenge, especially in regulated industries such
as pharmaceuticals. Implementing and maintaining Al systems requires highly skilled
professionals with knowledge of both chemistry and computer science, which can be a
problem due to their lack of availability. Training and deploying complex Al models
often requires significant computing resources. The use of Al in chemistry also raises
important ethical issues related to data privacy, intellectual property rights, and the
potential misuse of Al-generated knowledge or compounds. There is also a risk of

model bias if the training data contains systematic errors or is not representative [9, 11]
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Al models trained on specific datasets may have limited ability to generalize to new,
previously unknown data, which is important in chemistry, where new compounds and
reactions are constantly emerging. Integrating Al with existing laboratory processes can
be challenging and require significant changes. The potential risks associated with human
error when using complex Al systems should also not be overlooked. Finally, results
obtained with Al often require experimental validation, as Al is a powerful predictive tool
but does not replace physical experiments. Despite its significant advantages, the
widespread adoption of Al in chemistry is hampered by a number of technical,
organizational, and ethical challenges. To overcome these barriers, joint efforts of
scientists, developers, industry, and regulators are needed [1, 5].

Successful Al implementation requires not only significant investments in
information technology and infrastructure, but also the development of relevant skills
among chemists and the creation of effective interdisciplinary teams combining deep
expertise in both chemistry and computer science. To use Al effectively, chemists need
to understand its capabilities and limitations, and Al specialists need to have a thorough
knowledge of the chemical industry [8, 14].

The future of artificial intelligence in chemistry looks extremely promising and
promising. Further progress is expected in the development of more sophisticated
machine and deep learning algorithms, including improved generative models that can
create new chemical structures with desired properties and reinforcement learning
methods that can optimize complex chemical processes. One of the key trends is the
increasing integration of Al with other advanced technologies, such as robotics and
automated laboratory systems, which will lead to the creation of fully autonomous
research platforms. The development of quantum computing may also open up new
opportunities for modeling complex chemical systems and reactions with
unprecedented accuracy [6, 15]. User-friendly Al-based platforms and tools are
expected to emerge and become more widely available, addressing the needs of a wide
range of chemists, even those without deep computer science knowledge. The increase
in the amount and quality of chemical data suitable for training Al models is also an

important trend that will contribute to the accuracy and reliability of predictions [8,
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11]. In the future, Al will be increasingly used to solve fundamental and applied
problems in chemistry, such as predicting the mechanisms of chemical reactions at the
atomic level, developing new, more efficient and selective catalysts, and creating

materials with extreme properties that were previously considered unattainable [4,12].

Table 1.
SWOT ANALYSIS
- (Strengths) | - (Weaknesses)
> Accelerating research and >  Dependence on the quality
discovery and volume of training data
> High accuracy in > Limited interpretability of
predicting molecular properties some algorithms
> Ability to analyze large >  High cost of implementing
amounts of data and maintaining Al systems
> Automation of routine > The need for specialists
experimental processes with interdisciplinary knowledge
> Possibility to create new >  Risk of model bias
materials with unique properties
(Threats)
> Ethical issues in the use of
Al
> Potential risks to data
security and privacy
> Resistance to changes in
traditional research approaches
> Possible job losses
> Regulatory restrictions and
implementation challenges

Interdisciplinary cooperation between chemists, computer scientists, and
representatives of other scientific disciplines is expected to increase, which is a
prerequisite for the successful implementation and development of Al in chemistry.
Another important aspect is the development of ethical standards and regulatory
frameworks for the use of Al in chemical research, which will help ensure the
responsible and safe application of this powerful technology [8, 16].

The future of chemistry is inextricably linked to the further development and
widespread adoption of artificial intelligence, which opens up qualitatively new

opportunities in both fundamental research and practical applications in industry. It is
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predicted that Al will become an integral part of chemical research, transforming

approaches to the development of drugs, materials, catalysts, and analytical methods [5, 19].

Evolution of Al in chemistry Smart chemistry

> )

Intellectual chemistry chemical intelligence

N
B e

Fig. 1. Conceptual approaches to the integration of artificial intelligence

into chemical science: evolution, intellectualization, and smart technologies.

To realize the full potential of artificial intelligence in chemistry, it is crucial to
focus on creating reliable, transparent, and ethical systems that effectively integrate the
deep knowledge of chemists with the powerful computational capabilities of Al. Future
successes in this area will largely depend on the ability to develop Al models that are
not only highly accurate in their predictions but also understandable to chemists, as
well as ensuring that the data used in training and applying these models is properly
secured and confidential [18, 22]. Artificial intelligence is already demonstrating
impressive results in various fields of chemistry. In pharmaceuticals and
biotechnology, one of the most famous examples is the AlphaFold algorithm developed
by DeepMind, which made a breakthrough in accurately predicting the three-
dimensional structure of proteins, which is critical for identifying drug targets and

developing new drugs. BenevolentAl has successfully used Al to repurpose existing
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drugs, including the discovery of a potential treatment for COVID-19. Insilico
Medicine is another leader in this field, using Al to rapidly develop new drugs and
identify biomarkers. It is also worth noting Pfizer's collaboration with IBM Watson to
utilize Al capabilities in cancer research. New antibiotics capable of fighting drug-

resistant bacteria were discovered with the help of AI[15, 21].

00 2000-2010 <+ 2015 @ 2020-2022 + 2025-2030
I:ir§:l co‘nccptuu! developments A breakthrough in Widespread use of Al in Integration of Al with other
of Al in chemistry. Ideas for deep learning. chemical research. technologies (nanotechnology,

using algorithms to analyze

chemical data are formed. quantum computing, biotechnology).

Fig. 2. Evolution of Al in chemistry

In materials science, significant progress has been achieved through the use of
generative Al models. For example, the GNoME tool developed by DeepMind has
discovered hundreds of thousands of new stable materials, including potential
superconductors, which could have revolutionary consequences for various industries,
from quantum computers to energy. Microsoft has developed a powerful tool called
MatterGen, which allows you to generate new materials with specified properties,
opening up endless possibilities for creating innovative materials. Al 1s also used to
develop new polymers with improved characteristics for various applications, as well
as research in the field of nanomaterials design using machine learning methods [1,
12]. In the chemical industry, Al is used to optimize production processes and increase
their efficiency. The IBM RXN platform is successfully used to predict the outcome of
chemical reactions and optimize synthetic routes, which reduces research time and
costs. Companies such as PPG and Dow Chemical use Al to optimize the production
of coatings and predict the properties of new materials. DuPont is introducing Al-
controlled robots to perform hazardous tasks and automate production processes.

Borealis uses Al to improve the energy efficiency of chemical production [3, 17].
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Fig. 3. The interaction of artificial intelligence and chemistry

Analytical chemistry also has examples of successful Al applications. Researchers
from Florida State University have developed a machine learning-based tool that accurately
determines the chemical composition of salt solutions from their photographs, opening up
new opportunities for inexpensive and fast chemical analysis [6, 20].

These numerous examples of successful applications of artificial intelligence in
various fields of chemistry clearly demonstrate that Al is already a powerful tool that brings
real results, ranging from basic scientific research to practical applications in industry. These
examples clearly illustrate how Al helps solve complex scientific and industrial problems,
reduce development time, cut costs, and open up new opportunities that previously seemed
unattainable [4, 7].

An important prerequisite for the successful application of artificial intelligence in
chemistry is close cooperation between the developers of machine learning algorithms and
experts in the relevant fields of chemical science. In order for Al to be a truly effective tool,
it is necessary to ensure that models are trained on high-quality and relevant data, and that
their results are carefully interpreted and validated by expert chemists.

Conclusion. Artificial intelligence is rapidly transforming the landscape of chemical
research and industry, offering unprecedented opportunities to accelerate scientific

discovery, develop innovative materials, and optimize chemical processes. Al applications
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are already showing significant success in key areas such as drug discovery, materials
science, chemical reaction prediction, and analytical chemistry. The further development of
machine and deep learning algorithms, their integration with other advanced technologies,
and the growth in the volume and quality of available chemical data open up new prospects
for solving complex scientific and technological problems.

Despite existing challenges related to data quality, model transparency, and ethical
considerations, the potential for Al to revolutionize chemistry is enormous. To fully realize
this potential, further research and development in this area is needed, as well as active
interdisciplinary collaboration between chemists, computer scientists, and other
professionals. Given the rapid progress in the field of artificial intelligence, it is safe to
predict that in the future Al will play a key role in solving global problems related to
chemistry, such as developing new effective treatments for diseases, creating
environmentally friendly and sustainable materials, and optimizing chemical processes for
sustainable development.
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