UDC 621.394.74:519.872

Vagif Gasimov

Doctor of Technical Sciences, Professor, Head of the Department of Computer Technologies, Azerbaijan Technical University, Baku, Azerbaijan ORCID ID 0000-0003-3192-4225 *vaqif.qasimov@aztu.edu.az*

Balami Ismailov

Doctor of Technical Sciences, Professor of the Department of Computer Systems and Programming of the National Aviation Academy, Baku, Azerbaijan ORCID ID 0009-0002-3013-9161 *balemi@rambler.ru*

ANALYSIS OF THE RESULTS OF SIMULATIVE MODELLING OF THE INFORMATION SECURITY SYSTEM IN THE CORPORATE NETWORKS OF HIGHER EDUCATION INSTITUTIONS

Abstract. The analysis shows that the insufficient level of information security in service networks is the main cause of huge losses for enterprises. Despite the appearance of a number of works to solve this problem, there is currently no unified system for assessing information security. This shows that this problem has not yet been sufficiently studied and relevant. This work is one of the steps towards creating a system for assessing information security in service networks.

The purpose of the work is to develop an algorithm and simulation model, analyze the results of the simulation model to determine the main characteristics of the information security system (ISS), providing the ability to completely close all possible channels of threats by controlling all unauthorized access (UA) requests through the protection mechanism (PM).

To solve the problem, a simulation method was applied using the principles of queuing systems (QS). This method makes it possible to obtain the main characteristics of the ISS from the UA with an unlimited amount of buffer memory (BM). Models, an algorithm and a methodology for the development of ISS from UA are proposed, which is considered as a single-phase multi-channel QS with an unlimited volume of BM. The process of obtaining simulation results was implemented in the GPSS World modeling system and comparative analyzes of the main characteristics of the ISS were carried out for various laws of distribution of output parameters. At the same time, UA requests were the simplest flows, and the service time was subject to exponential, constant and Erlang distribution laws.

Conducted experiments based on the proposed models and algorithm for analyzing the characteristics of the ISS from the UA as a single-phase multi-channel QS with unlimited waiting time for requests in the queue confirmed the expected results. The results obtained can be used to build new or modify existing ISS in corporate networks for servicing objects for various purposes. This work is one of the approaches to generalizing the problems under consideration for systems with an unlimited volume of BM. Prospects for further research include research and development of the principles of hardware and software implementation of ISS in service networks.

Keywords: unauthorized access (UA); information security systems (ISS); information security; queuing systems (QS); protection mechanism (PM); simulation modeling.

1. INTRODUCTION

Formulation of the problem. The work is devoted to the study of information security problems in service networks with an unlimited volume of BM. An analysis of research and experience in this area shows that insufficient security of information resources in corporate service networks leads to huge losses in enterprises, including higher educational institutions, which emphasizes the high importance of the problem of information security [1], [2].

Analysis of the current state of the problem in the field of information security, incl. development of ISS, shows that there are serious difficulties associated largely with the lack of a unified system for assessing information security that allows for a quantitative assessment in the design and operation of ISS for service networks [1], [3], [4]. It should be noted that at present, due to insufficient experience in designing an ISS, the tasks of its construction must be solved in the early stages of designing a service network.

Based on the above, we can say that the problem of information security in service networks has not been sufficiently studied and is relevant [1], [5] [6]. It should be noted that one of the most obvious causes of information security violations is the deliberate request of UA to confidential information by illegal users and subsequent unwanted manipulations with this information [1], [7]. The effectiveness of ensuring information security in service networks is mainly determined by the level of security of the service network itself [8], [9], [10], and therefore the implemented protection mechanisms are determined.

Due to the existence of the fact that the protection system does not completely close all possible channels of manifestation of threats in the structure, a new ISS structure was proposed in [1.p.47], where, unlike the existing structure, each input flow is provided with a PM for servicing.

The work [1] proposes a lossy ISS structure with limited and unlimited volume of BM, ensuring maximum information security of service networks by ensuring control of the transition of all UA requests through the PM. Here we analyze the results of an ISS simulation model with an unlimited volume of BM for wide values of input and output parameters.

Note that when solving the security problem in service networks, the main factor is the network security class, which is determined by a set of PMs implemented in the form of hardware or software in the network [1], [11],[12]. As already noted, in service networks, along with normal requests, there are UA requests for confidential information from illegal users, which can lead to disruption of the network.

It should be noted that the PM, influencing the entire process of ensuring information security, can function in constant information interaction with other elements of the ISS. It is known that the functioning of the PM is described by such possible states as serviceable, faulty, diagnosed, restored [13], [14]. In ISS, risk is considered the possibility of the occurrence of some unfavorable event associated with the characteristics of the unreliability of the PM, entailing various types of losses [1], [15],[16]. However, approaches associated with risk arising from the reliability characteristics of the PM are not considered in this work, i.e. it is assumed that all MP are reliable. At the same time, **the object of research** is considered to be a ISS from the UA with an unlimited amount of buffer memory in service networks. **The subject of the study** is to determine the main characteristics of the ISS from the UA data with an unlimited amount of buffer memory in service networks. **The purpose of the work** is to develop an algorithm and a simulation model, as well as to analyze the results of the simulation model to determine the main characteristics of an ISS with an unlimited volume of BM.

2. THEORETICAL BASIS

We consider the structure of the ISS with an unlimited calculation of the BM (Fig. 1), in which all input flows receive a PM for servicing. It is assumed that the considered structure of the ISS ensures information security of network maintenance. This structure is a hardware and software complex that interacts with streams of random events that determine the actions of attackers, incorrect distribution of access rights, the use of unauthorized software, as well as errors in software and hardware systems for identification and authentication.

It is assumed that an intruder (attacker, UA requests) at the system input creates various threats with an intensity λ of . ISS consists of N - the number of PMs that carry out service delays $\tau_0 = \frac{1}{\mu}$, where μ - the intensity of request servicing. If we consider the intruder's block as

a source of information, and the PM as parallel operating devices, then as a mathematical model of the ISS we can consider a single-phase, multi-channel QS with an unlimited volume of BM. At the same time, the complexity of servicing UA requests is characterized by screening out UA requests, detecting and classifying UA attempts, blocking or passing UA requests to protected resources, etc.

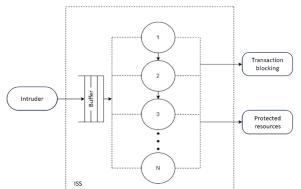


Fig. 1 Structure of ISS with unlimited volume of BM

Taking into account the noted complex nature of servicing UA requests, as a function of the probability of loss of UA requests from failure due to overload of the servicing system for a system with unlimited waiting (that is, for a system with unlimited BM), in [1p.49] it is proposed to use the Erlang delay function:

$$p_{1}(N,\lambda,\mu) = \frac{\rho^{N} / [(N-1)! (N-\rho)]}{\sum_{k=0}^{N-1} \rho^{k} / k! + \rho^{N} / [(N-1)! (N-\rho)]}$$

Then the problem of determining the optimal values of the ISS characteristics can be formulated as minimizing the mathematical expectation of the function of the probability of loss of requests UA from refusal due to overload of the service system:

$$M \left[\frac{\rho^{N} / \left[(N-1) ! (N-\rho)\right]}{\sum_{k=0}^{N-1} \rho^{k} / k! + \rho^{N} / \left[(N-1)! (N-\rho)\right]}\right] \rightarrow \min$$

at $\lambda \ge \lambda_{0}, \mu \ge \mu_{0}, N \ge N_{0}$
 $L_{q} \le L^{0}$

where *M* - is the sign of the mathematical expectation; $\rho = \frac{\lambda}{\mu}$ - reduced intensity; λ_0, μ_0, N, L^0 - permissible limit values λ, μ, N, L_q ; L_q - average value of the queue length, i.e. a value that determines the volume of BM.

Problems associated with insufficient information security in service networks and the task of determining the optimal values of the characteristics of the ISS from the UA for various cases are considered and analytically solved in [1] and the optimal values of the characteristics of the QS with and without waiting for requests in the queue are obtained. However, for a detailed analysis of the characteristics of the ISS from the UA for wide values

of input and output parameters, it is preferable to use simulation modeling methods, considering it as a single-phase, multi-channel QS with and without waiting.

Considering the volume of the obtained results of the simulation model, here we will limit ourselves to considering the analysis of the results of the QS simulation model with unlimited waiting for requests in the queue, covering wide values of input and output parameters.

Thus, based on the presented structure of the ISS, the work sets the task of analyzing the results of simulation of a single-phase multi-channel QS with an unlimited volume of BM. To do this, using the simulation method, it is necessary to determine the structural and temporal

characteristics of the ISS within the given average values λ , μ and the number of parallel operating service devices (PM).

3. RESEARCH METHODS

To determine the characteristics of the ISS that allow it to function within limited resources, it is assumed that the input flow of information, i.e. UA requests are the simplest, and the service time is subject to exponential, constant and Erlang distribution laws. To adequately describe the functioning of the ISS from the UA, algorithms for a simulation model of the service process have been developed for three cases.

- The receipt of requests to the ISS and the service time are subject to the exponential distribution law.

- The receipt of requests in the ISS is subject to an exponential distribution law, and the service time is subject to a uniform distribution law.

- The receipt of requests in the ISS is subject to the exponential distribution law, and the service time is subject to the Erlang distribution law.

The developed algorithm for the functioning of the ISS from the UA includes the following steps.

- 1. The average values λ , μ and minimum permissible limit values of the number of parallel operating service devices (PM) are set. For the purpose of a detailed analysis of the properties of the system under study, a table structure is organized for the waiting time in the queue and the time spent by requests in the system. In this case, the upper limit of the first frequency interval, the value of all other frequency intervals and the number of frequency intervals are set. The goal here is to construct density histograms of the distribution of waiting time in the queue and the time spent by requests in the system based on the accumulation of the frequency of a random variable falling into given frequency intervals.
- 2. When an UA request is received in the ISS, at least one free PM is searched; if there is one, the UA request is sent to this free PM and the UA requests are filtered out, and attempts of UA are detected and classified. As a result, the original UA flow is rarefied with $p_1, p_2 = 1-p_1$ certain probabilities, forming an output flow, i.e. blocking is likely to occur p_1 or UA requests to protected resources are likely to be passed $p_2 = 1-p_1$
- 3. If all PMs are busy, the UA request waits in a queue in the system's BM until one of the PMs is released, since there is always free space in the BM.
- 4. After one of the PMs is released, the UA request arrives at this free PM and the servicing process occurs in accordance with the third step of the algorithm.
- 5. Note that the probability values $p_1, p_2 = 1 p_1$ are determined based on statistical analysis. Based on the proposed algorithm, covering three cases of operation of the ISS from the

UA as a single-phase, multi-channel QS with an unlimited capacity of BM, models for

simulating the ISS from the UA with an unlimited amount of buffer memory have been developed in the GPSS World modeling language. During the simulation, the model allows

you to determine N = 2,5:

- number of requests to the PM (ENTRIES);
- average queue length (AVE.C);
- PM utilization rate (UTIL);
- mean value of the corresponding random variable (MEAN);
- standard deviation of a random variable (STD.DEV);
- lower and upper limits of the frequency interval (RANGE);
- the number of queries waiting for a specific condition to be fulfilled, depending on the state of this table (RETRY);
- the number of random values falling into a given interval (FREQUENCY);
- accumulated frequency, expressed as a percentage of the total number of random values (CUM.%).

4. RESULTS AND DISCUSSION

Based on the execution of the simulation model for N = 2,5 average values of real data, with $\lambda = 1/3500$ ms and $\mu = 1/1700$ ms results were obtained for three cases:

1.Receipt of requests to the ISS and service time are subject to an exponential distribution law.

In the first case, the results of a simulation model of the functioning of the ISS were obtained - reports (fragments of reports are shown in Fig. 2, on the basis of which Table 1 was created), and histograms of the distribution densities of the residence time T_U and waiting time

	3204 3204 103205	37 1521.		IME AVE.(-0 135 0.43		QUEUE CH_1	MAX CON 23	T. ENTRY 2 100004	52060	1.0	CONT. AVE.	TIME AVE	.(-0) 0.001	RETP 0
STORAGE UZEL	CAP. REM. MIN. MA 2 0 0			UTIL. REIRY 1.000 0		STORAGE UZEL	CAP. RE					C. UTIL. P 8 0.689		
TABLE T W	MEAN STD.DEV. 0.434 0.291			TRY FREQUENC	Y CUM.*	TABLE	MEAN	STD.DEV		RANGE	,	RETRY FREQ	UENCY	CUM.
1_W	0.434 0.291			69	0.07	T_W	0.000	0.001				0		
	0	.000 -	0.001	20	0.09				0.000	7	0.000			
		.001 -	0.001		0.11				0.000		0.001		21 52	
	0	.001 -	0.002	23	0.13				0.001		0.001		52 05	
	0	.002 -	0.002	46	0.18				0.001		0.002		72	
	0	.002 -	0.002	60	0.24				0.002		0.002		82	
	0	.002 -	0.003	43	0.28				0.002		0.002		06	
	0	.003 -	0.003	61	0.34				0.002		0.003		63	
		.003 -	0.004	45	0.39				0.003		0.004			99.
	0	.004		99612	100.00				0.004				83 1	
T_U	0.435 0.291					T_U	0.001	0.001	0.001	-		0		
				52		0	0.001	0.001		-	0.001	509	61	56.
			0.002		0.10				0.001	2	0.002		72	
		.002 -	0.002		0.17				0.002		0.002		07	
		.002 -	0.003	83					0.002		0.003		18	
			0.004	94					0.003		0.004		56	
		.004 -	0.005		0.45				0.004		0.005		81	
		.005 -	0.006	66					0.005		0.006		19	99.
			0.007	86					0.006	-	0.006		35	99.
		.007 -	0.007	89305					0.006	-	0.007		8 1	100.
		.007 -		03303	100.00				0.007	2			2 1	100.
	MAX CONT. ENTRY H					OUEUE	MAX COL	NT. ENTR			.CONT. AVE			0) B
CH_1	MAX CONT. ENTRY H			IME AVE. (-		QUEUE CH_1	MAX CON 9		Y ENTRY	(0) AVE			VE.(-0	
		81325 0	.202 0.	.000 0.0	00 0				Y ENTRY	(0) AVE		E.TIME A	VE.(-0	
CH_1	13 0 100002	81325 0	.202 0. AVL. AVE.C	.000 0.0	00 0 Y DELAY		9	0 10000	Y ENTRY 2 9307:	(0) AVE L 0	.051	E.TIME A 0.000	VE.(-0 0.00	DÓ
CH_1 TORAGE	13 0 100002 CAP. REM. MIN. MJ	81325 0	.202 0. AVL. AVE.C	.000 0.0	00 0 Y DELAY	CH_1	9 CAP. RI	0 10000	Y ENTRY 2 93073 MAX. 1	(0) AVE	.051 AVL. AVE	E.TIME A 0.000	VE.(-0 0.00 RETRY	DO Y DE
CH_1 TORAGE UZEL TABLE	13 0 100002 CAP. REM. MIN. MJ 4 2 0 MEAN STD.DEV.	81325 0 AX. ENTRIES 4 100002 RANGE	.202 0. AVL. AVE.C 1 2.052	. UTIL. RETR 2 0.513 0	00 0 Y DELAY 0	CH_1 STORAGE UZEL	9 CAP. RI	0 10000	Y ENTRY 2 93073 MAX. 1	(0) AVE	.051 AVL. AVE	E.TIME A 0.000 E.C. UTIL.	VE.(-0 0.00 RETRY	DO Y DE
CH_1 TORAGE UZEL ABLE	13 0 100002 CAP. REM. MIN. MJ 4 2 0	81325 0 AX. ENTRIES 4 100002 RANGE	.202 0. AVL. AVE.C 1 2.052	0000 0.0 C. UTIL. RETR 0.513 0 RETRY FREQUEN 0	OOOOO Y DELAY O CY CUM.%	CH_1 STORAGE UZEL TABLE	9 CAP. RI 5 MEAN	0 10000; EM. MIN. 3 0 STD.DE	Y ENTRY 2 9307: MAX. 1 5 : 7.	(0) AVE. L 0. ENTRIES L00002	.051 AVL. AVE 1 2.0	E.TIME A 0.000 E.C. UTIL.	VE.(-0 0.00 RETRY 0	DO Y DE
CH_1 TORAGE UZEL ABLE	13 0 100002 CAP. REM. MIN. MJ 4 2 0 MEAN STD.DEV. 0.000 0.000	81325 0 AX. ENTRIES 4 100002 RANGE	.202 0. AVL. AVE.C 1 2.052 F 0.000	000 0.0 C. UTIL. RETR 0.513 0 VETRY FREQUEN 0 94911	00 0 Y DELAY 0 CY CUM.% 94.91	CH_1 STORAGE UZEL	9 CAP. RI 5 MEAN	0 10000; EM. MIN. 3 0 STD.DE	Y ENTRY 2 9307: MAX. 1 5 : 7.	(0) AVE. L 0. ENTRIES L00002	.051 AVL. AVE 1 2.0	E.TIME A 0.000 E.C. UTIL. 070 0.414	VE.(-0 0.00 RETRY 0	DO Y DE
CH_1 TORAGE UZEL TABLE	13 0 100002 CAP. REM. MIN. MJ 4 2 0 MEAN STD.DEV. 0.000 0.000	81325 0 AX. ENTRIES 4 100002 RANGE	.202 0. AVL. AVE.C 1 2.052	000 0.0 UTIL. RETR 0.513 0 VETRY FREQUEN 0 94911 3559	OOOOO Y DELAY O CY CUM.%	CH_1 STORAGE UZEL TABLE	9 CAP. RI 5 MEAN	0 10000; EM. MIN. 3 0 STD.DE	Y ENTRY 2 9307: MAX. 1 5 : 7.	(0) AVE L 0. ENTRIES L00002 RANGE	.051 AVL. AVE 1 2.0	E.TIME A 0.000 E.C. UTIL. 070 0.414 RETRY FR 0	VE.(-0 0.00 RETRY 0	DO Y DE CY C
CH_1 TORAGE UZEL TABLE	13 0 100002 CAP. REM. MIN. MJ 4 2 0 MEAN STD.DEV. 0.000 0.000	81325 0 AX. ENTRIES 4 100002 RANGE - 0.000 -	.202 0. AVL. AVE.C 1 2.052 P 0.000 0.001	000 0.0 UTIL. RETR 0.513 0 NETRY FREQUEN 0 94911 3559 1121	00 0 Y DELAY 0 CY CUM.% 94.91 98.47	CH_1 STORAGE UZEL TABLE	9 CAP. RI 5 MEAN	0 10000; EM. MIN. 3 0 STD.DE	Y ENTRY 2 9307: MAX. 1 5 : 7.	(0) AVE L 0 ENTRIES L00002 RANGE	.051 AVL. AVE 1 2.0	E.TIME A 0.000 E.C. UTIL. 070 0.414 RETRY FR 0 9	VE.(-0 0.00 RETRY 0 EQUENC	DO Y DE CY C 9
CH_1 TORAGE UZEL TABLE	13 0 100002 CAP. REM. MIN. MG 4 2 0 MEAN SID.DEV. 0.000 0.000	81325 0 AX. ENTRIES 4 100002 RANGE 	.202 0. AVL. AVE.C 1 2.052 B 0.000 0.001 0.001	000 0.0 UTIL. RETR 0.513 0 VETRY FREQUEN 0 94911 3559 1121 304	00 0 Y DELAY 0 CY CUM.& 94.91 98.47 99.59	CH_1 STORAGE UZEL TABLE	9 CAP. RI 5 MEAN	0 10000; EM. MIN. 3 0 STD.DE	Y ENTRY 2 9307: MAX. 1 5 : V.	(0) AVE L 0. ENTRIES LOOOO2 RANGE - -	.051 AVL. AVE 1 2.0 0.000 0.001	E.TIME A 0.000 E.C. UTIL. 070 0.414 RETRY FR 0 9	VE.(-0 0.00 RETRY 0 EQUENO 9001 817	DO Y DE CY C 9 9
CH_1 TORAGE UZEL ABLE	13 0 100002 CAP. REM. MIN. MJ 4 2 0 MEAN STD.DEV. 0.000 0.000	81325 0 XX. ENTRIES 4 100002 RANGE - 0.000 - 0.001 - 0.001 -	.202 0. AVL. AVE.C 1 2.052 B 0.000 0.001 0.001 0.002	000 0.0 UTIL. REIR 0.513 0 REIRY FREQUEN 0 94911 3559 1121 304 84	00 0 Y DELAY 0 CY CUM. 94.91 98.47 99.59 99.89	CH_1 STORAGE UZEL TABLE	9 CAP. RI 5 MEAN	0 10000; EM. MIN. 3 0 STD.DE	Y ENTRY 2 9307: MAX. 1 5 : 7. 0.000 0.001	(0) AVE L 0. ENTRIES L00002 RANGE - - -	.051 AVL. AVE 1 2.0 0.000 0.001 0.001	E.TIME A 0.000 E.C. UTIL. 070 0.414 REIRY FR 0 9	VE. (-0 0.00 RETRY 0 EQUENO 9001 817 167	00 Y DE CY C 9 9 9
CH_1 TORAGE UZEL ABLE	13 0 100002 CAP. REM. MIN. MJ 4 2 0 MEAN STD.DEV. 0.000 0.000	81325 0 AX. ENTRIES 4 100002 RANGE 0.000 - 0.001 - 0.001 - 0.002 -	.202 0. AVL. AVE.C 1 2.052 B 0.000 0.001 0.001 0.002 0.002	000 0.0 . UTIL. RETR 0 0.513 0 0 94911 3559 1121 304 84 21	00 0 Y DELAY 0 CY CUM. 94.91 98.47 99.59 99.89 99.98 100.00	CH_1 STORAGE UZEL TABLE	9 CAP. RI 5 MEAN	0 10000; EM. MIN. 3 0 STD.DE	Y ENTRY 2 9307: MAX. 1 5 : 7. 0.000 0.001 0.001	(0) AVE L 0. ENTRIES L00002 RANGE - - - - -	.051 AVL. AVE 1 2.0 0.000 0.001 0.001 0.001 0.002	E.TIME A 0.000 E.C. UTIL. 070 0.414 RETRY FR 0 9	VE. (-0 0.00 RETRY 0 EQUENO 9001 817 167 15	DO Y DE CY C 9 9 10
CH_1 TORAGE UZEL ABLE T_W	13 0 100002 CAP. REM. MIN. MJ 4 2 0 MEAN STD.DEV. 0.000 0.000	81325 0 AX. ENTRIES 4 100002 RANGE - 0.000 - 0.001 - 0.002 - 0.002 - 0.002 -	.202 0. AVL. AVE.C 1 2.052 P 0.000 0.001 0.001 0.002 0.002 0.002 0.002 0.003	000 0.0 UTIL. RETR 0.513 0 VEIRY FREQUEN 0 94911 3559 1121 304 84 21 1 1	00 0 Y DELAY 0 CY CUM. 94.91 98.47 99.59 99.89 99.98 100.00	CH_1 STORAGE UZEL TABLE T_W	9 CAP. RI 5 MEAN 0.000	0 10000 EM. MIN. 3 0 STD.DE	Y ENTRY 2 9307: MAX. 1 5 : 7. 0.000 0.001 0.001 0.002	(0) AVE L 0. ENTRIES L00002 RANGE - - - - - - - - - -	.051 AVL. AVE 1 2.0 0.000 0.001 0.001 0.002 0.002	E.TIME A 0.000 E.C. UTIL. 070 0.414 RETRY FR 0 9	VE. (-0 0.00 RETRY 0 EQUENO 9001 817 167 15	DO Y DE CY C 9 9 10
CH_1 TORAGE UZEL ABLE T_W	13 0 100002 CAP. REM. MIN. MJ 4 2 0 MEAN STD.DEV. 0.000 0.000	81325 0 AX. ENTRIES 4 100002 RANGE 0.000 - 0.001 - 0.001 - 0.002 - 0.002 - 0.002 -	.202 0. AVL. AVE.C 1 2.052 0.000 0.001 0.001 0.002 0.002 0.002 0.003 0.003	000 0.0 UTIL. RETR 0.513 0 NETRY FREQUEN 0 94911 3559 1121 304 84 21 1 1 0	00 0 Y DELAY 0 CY CUM.& 94.91 99.59 99.59 99.98 99.98 99.98 100.00 100.00	CH_1 STORAGE UZEL TABLE T_W	9 CAP. RI 5 MEAN	0 10000 EM. MIN. 3 0 STD.DE	Y ENTRY 2 9307: MAX. 1 5 : 7. 0.000 0.001 0.001 0.002	(0) AVE L 0. ENTRIES L00002 RANGE - - - - - - - - - - - -	.051 AVL. AVE 1 2.0 0.000 0.001 0.001 0.002 0.002	E.TIME A 0.000 E.C. UTIL. 770 0.414 REIRY FR 0 9	VE. (-0 0.00 RETRY 0 EQUENO 9001 817 167 15 2	00 Y DE 9 9 10 10
CH_1 TORAGE UZEL ABLE T_W	13 0 100002 CAP. REM. MIN. M 4 2 0 MEAN STD.DEV. 0.000 0.000	81325 0 AX. ENTRIES 4 100002 RANGE 0.000 - 0.001 - 0.002 - 0.002 - 0.002 - 0.003 -	.202 0. AVL. AVE.C 1 2.052 P 0.000 0.001 0.002 0.002 0.002 0.003 0.003 0.001	000 0.0 UTIL. RETR 0.513 0 NETRY FREQUEN 0 94911 3559 1121 304 21 1 0 63356	00 0 Y DELAY 0 CY CUM. 94.91 98.47 99.59 99.88 99.88 99.98 100.00 100.00 100.00 70.38	CH_1 STORAGE UZEL TABLE T_W	9 CAP. RI 5 MEAN 0.000	0 10000 EM. MIN. 3 0 STD.DE	<pre>Y ENTRY 2 9307: MAX. I 5 : 7. 0.000 0.001 0.001 0.002</pre>	(0) AVE L 0. ENTRIES L00002 RANGE - - - - - - - - -	.051 AVL. AVE 1 2.0 0.000 0.001 0.001 0.002 0.002 0.002	E.TIME A 0.000 E.C. UTIL. 070 0.414 RETRY FR 0 9 9	VE. (-0 0.00 RETRY 0 EQUENO 9001 817 167 15 2 6085	00 Y DE 9 9 10 10
CH_1 TORAGE UZEL ABLE T_W	13 0 100002 CAP. REM. MIN. MJ 4 2 0 MEAN STD.DEV. 0.000 0.000	81325 0 AX. ENTRIES 4 100002 RANGE - 0.001 - 0.002 - 0.002 - 0.002 - 0.003 - - 0.003 - - 0.003 - -	.202 0. AVL. AVE.0 1 2.052 P 0.000 0.001 0.002 0.002 0.003 0.003 0.003 0.001 0.001 0.001 0.002	000 0.0 . UTIL. RETR 0.513 0 NETRY FREQUEN 0 94911 3559 1121 304 21 1 0 63356 19522	00 0 Y DELAY 0 CY CUM.& 94.91 98.47 99.55 99.89 99.98 100.00 100.00 100.00 100.00 70.38 92.07	CH_1 STORAGE UZEL TABLE T_W	9 CAP. RI 5 MEAN 0.000	0 10000 EM. MIN. 3 0 STD.DE	Y ENTRY 2 9307: MAX. 1 5 : 7. 0.000 0.001 0.001 0.002	(0) AVE L 0. ENTRIES L00002 RANGE - - - - - - - - -	.051 AVL. AVE 1 2.0 0.000 0.001 0.001 0.002 0.002	E.TIME A 0.000 E.C. UTIL. 070 0.414 RETRY FR 0 9 0 6	VE. (-0 0.00 RETRY 0 EQUENO 9001 817 167 15 2	00 Y DE 9 9 10 10
CH_1 TORAGE UZEL ABLE T_W	13 0 100002 CAP. REM. MIN. M 4 2 0 MEAN STD.DEV. 0.000 0.000	81325 0 AX. ENTRIES 4 100002 RANGE - 0.001 - 0.001 - 0.002 - 0.002 - 0.002 - 0.003 - - 0.003 - - 0.001 - 0.003 - - 0.003 - - 0.001 - 0.002 - 0.0	.202 0. AVL. AVE.C 1 2.052 P 0.000 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.003 0.001 0.002 0.003	000 0.0 . UTIL. RETR 0.513 0 VETRY FREQUEN 0 94911 3559 1121 304 84 21 1 0 63356 15522 5293	00 0 Y DELAY 0 CY CUM.% 94.91 98.47 99.89 99.89 100.00 100.00 100.00 70.38 92.07 97.95	CH_1 STORAGE UZEL TABLE T_W	9 CAP. RI 5 MEAN 0.000	0 10000 EM. MIN. 3 0 STD.DE	<pre>Y ENTRY 2 9307: MAX. I 5 : 7. 0.000 0.001 0.001 0.002</pre>	(0) AVE L 0. ENTRIES 100002 RANGE - - - - - - - - - - - - -	.051 AVL. AVE 1 2.0 0.000 0.001 0.001 0.002 0.002 0.002	E.TIME A 0.000 E.C. UTIL. 170 0.414 RETRY FR 0 9 0 6	VE. (-0 0.00 RETRY 0 EQUENO 9001 817 167 15 2 6085	00 Y DE 9 9 10 10 7 9
CH_1 TORAGE UZEL ABLE T_W	13 0 100002 CAP. REM. MIN. MJ 4 2 0 MEAN STD.DEV. 0.000 0.000	81325 0 AX. ENTRIES 4 100002 - - - - - - - - - - - - -	.202 0. AVL. AVE.C 1 2.052 P 0.000 0.001 0.002 0.002 0.003 0.003 0.001 0.002 0.003 0.001 0.002 0.002 0.003	.000 0.0 . UTIL. RETR . 0.513 0 VETRY FREQUEN 0 94911 3559 1121 304 24 1 1 0 63356 15522 5293 1350	00 0 Y DELAY 0 CY CUM.% 94.91 98.47 99.59 99.89 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	CH_1 STORAGE UZEL TABLE T_W	9 CAP. RI 5 MEAN 0.000	0 10000 EM. MIN. 3 0 STD.DE	Y ENTRY 2 9307: MAX. 1 5 : 7. 0.000 0.001 0.001 0.002 0.001	(0) AVE L 0. ENTRIES L00002 RANGE - - - - - - - - - - - - -	.051 AVL. AVE 1 2.0 0.000 0.001 0.001 0.002 0.002 0.002	E.TIME A 0.000 E.C. UTIL. 170 0.414 REIRY FR 0 9 0 6 1	VE. (-0 0.00 RETRY 0 EQUENC 9001 817 167 15 2 6085 7898	00 Y DE 9 9 10 10 7 9 9
CH_1 TORAGE UZEL ABLE T_W	13 0 100002 CAP. REM. MIN. M 4 2 0 MEAN STD.DEV. 0.000 0.000	81325 0 NX. ENTRIES 4 100002 RANGE 0.000 - 0.001 - 0.002 - 0.002 - 0.002 - 0.002 - 0.003 - 0.002 - 0.003 - 0.0003 - 0.003 -	.202 0. AVL. AVE.C 1 2.052 0.000 0.001 0.001 0.002 0.002 0.002 0.003 0.001 0.002 0.003 0.001 0.002 0.003 0.001 0.002 0.003 0.001 0.002 0.003 0.001	000 0.0 . UTIL. RETR 0.513 0 VETRY FREQUEN 0 94951 3559 1121 304 84 21 1 0 63356 15522 5295 1350 360	00 0 Y DELAY 0 CY CUM.% 94.91 99.59 99.96 100.00 100.00 100.00 70.38 92.07 77.95 99.45 99.45	CH_1 STORAGE UZEL TABLE T_W	9 CAP. RI 5 MEAN 0.000	0 10000 EM. MIN. 3 0 STD.DE	Y ENTRY 2 9307: 5 : 7. 0.000 0.001 0.001 0.002 0.001 0.002 0.001	(0) AVE 1 0. ENTRIES 100002 RANGE - - - - - - - - - - - - -	.051 AVL. AVE 1 2.0 0.000 0.001 0.001 0.002 0.002 0.002 0.002 0.002	E.TIME A 0.000 E.C. UTIL 070 0.414 REIRY FR 0 9 0 6 1	VE.(-0 0.00 RETRY 0 EQUENC 9001 817 167 15 2 6085 7898 4488 1185	DO Y DE S S 10 10 7 9 9 9 9 10 10 10 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
CH_1 TORAGE UZEL ABLE T_W	13 0 100002 CAP. REM. MIN. MJ 4 2 0 MEAN STD.DEV. 0.000 0.000	81325 0 AX. ENTRIES 4 100002 RANGE 0.000 - 0.001 - 0.002 - 0.002 - 0.003 - 0.002 - 0.003 - 0.002 - 0.003 - 0.002 - 0.003 - 0.002 - 0.003 - 0.003 - 0.003 - 0.000 - 0.000 - 0.000 - 0.003 - 0.000 -	.202 0. AVL. AVE.C 1 2.052	.000 0.0 .UTIL. RETR 0 .513 0 94911 3559 1121 304 84 21 1 1 0 63356 19522 5293 1350 360 106	00 0 Y DELAY 0 CY CUM.& 94.91 98.47 99.59 99.89 100.00 100.00 100.00 100.00 100.00 100.00 70.38 92.07 97.95 99.85 99.85	CH_1 STORAGE UZEL TABLE T_W	9 CAP. RI 5 MEAN 0.000	0 10000 EM. MIN. 3 0 STD.DE	Y ENTRY 2 9307: 5 : 7. 0.000 0.001 0.001 0.002 0.001 0.002 0.002 0.002	(0) AVE 1 0. ENTRIES 100002 RANGE - - - - - - - - - - - - -	.051 AVL. AVE 1 2.0 0.000 0.001 0.002 0.002 0.002 0.002 0.002 0.003	E.TIME A 0.000 E.C. UTIL. 770 0.414 RETRY FR 0 9 0 6 1	VE. (-0 0.00 RETRY 0 EQUENC 9001 817 167 15 2 6085 7898 4488 1185 318	00 Y DE CY C 9 9 9 10 10 10 7 9 9 9 9 9 9 9 9 9 9 9
CH_1	13 0 100002 CAP. REM. MIN. M 4 2 0 MEAN STD.DEV. 0.000 0.000	81325 0 W. ENTRIES 4 100002 RANGE 0.001 - 0.001 - 0.001 - 0.001 - 0.002 - 0.002 - 0.002 - 0.003 - 0.0003 - 0.003 - 0.003 - 0.003 - 0.005 -	.202 0. AVL. AVE.C 1 2.052 0.000 0.001 0.001 0.002 0.002 0.002 0.003 0.001 0.001 0.0000 0.00000 0.0000	.000 0.0 .UTIL. RETR 0.513 0 VETRY FREQUEN 0 94911 3559 1121 1 0 63356 19522 5293 3500 360 106 28	00 0 Y DELAY 0 CY CUM.* 94.91 98.47 99.59 99.89 100.00 100.00 100.00 70.38 92.07 97.95 99.45 99.85 99.85 99.85	CH_1 STORAGE UZEL TABLE T_W	9 CAP. RI 5 MEAN 0.000	0 10000 EM. MIN. 3 0 STD.DE	Y ENTRY 2 9307: 5 : 7. 0.000 0.001 0.001 0.002 0.001 0.002 0.002 0.003 0.004	(0) AVE 1 0. ENTRIES 100002 RANGE - - - - - - - - - - - - -	.051 AVL. AVE 1 2.0 0.000 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.004 0.004	E.TIME A 0.000 E.C. UTIL. 070 0.414 REIRY FR 9 9 0 6 1	VE. ((0.00 RETR) 0 EQUENC 9001 817 15 2 6085 7898 4488 1185 318 94	00 Y DE CY C 9 9 9 9 10 10 7 9 9 9 9 9 9 9 9 9 9 9 9
CH_1 TORAGE UZEL ABLE T_W	13 0 100002 CAP. REM. MIN. MJ 4 2 0 MEAN STD.DEV. 0.000 0.000	81325 0 AX. ENTRIES 4 100002 RANGE 0.000 - 0.001 - 0.002 - 0.002 - 0.003 - 0.002 - 0.003 - 0.002 - 0.003 - 0.002 - 0.003 - 0.002 - 0.003 - 0.003 - 0.003 - 0.000 - 0.000 - 0.000 - 0.003 - 0.000 -	.202 0. AVL. AVE.C 1 2.052	.000 0.0 . UTIL. RETR 0 .513 0 VETRY FREQUEN 0 94911 3559 1121 304 84 21 1 0 63356 16522 5293 1350 360 166 28 1	00 0 Y DELAY 0 CY CUM.& 94.91 98.47 99.59 99.89 100.00 100.00 100.00 100.00 100.00 100.00 70.38 92.07 97.95 99.85 99.85	CH_1 STORAGE UZEL TABLE T_W	9 CAP. RI 5 MEAN 0.000	0 10000 EM. MIN. 3 0 STD.DE	Y ENTRY 2 9307: 5 : 7. 0.000 0.001 0.001 0.002 0.001 0.002 0.002 0.002	(0) AVE. ENTRIES 100002 RANGE - - - - - - - - - - - - -	.051 AVL. AVE 1 2.0 0.000 0.001 0.002 0.002 0.002 0.002 0.002 0.003	E.TIME A 0.000 E.C. UTIL. 170 0.414 REIRY FR 0 9 0 6 1	VE. ((0.00 RETR) 0 EQUENC 9001 817 15 2 6085 7898 4488 1185 318 94	00 Y DE 9 9 10 10 10 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

T_w of requests, a	at $N = 2,5$	(Fig. 3).
----------------------	--------------	-----------



Fig.2. Fragments of reports for the first case, when N = 2,5

Fig.3. Histograms of the distribution densities of the residence time T_{U} and waiting time T_{W} of

requests for the first case, for N = 2,5.

Table1 provides the dynamics of changes in system characteristics, i.e. the number of requests in the PM, the average queue length and the PM utilization rate depending on the number of PM (N) during the simulation for the first case.

Analysis of the dynamics of changes in these characteristics shows that with an increase in the number of PMs from 2 to 5:

- the number of requests in the PM remains almost unchanged, i.e. the difference is 1;
- the average queue length increases, and the difference is 0.071;
- the coefficient of utilization of the PM decreases, and the difference is 0.586.

Table 1

Dynamics of changes in system characteristics depending on the number of PMs for the first case

		the mot case	
	Number of	Average queue	PM utilization
Number	requests to the	length (AVE.C)	rate (UTIL)
of PM	PM (ENTRIES)		
2	100002	1.999	1.000
3	100003	2.068	0.689
4	100002	2.052	0.513
5	100002	2.070	0.414

In the models, for the purpose of constructing histograms, 10 frequency intervals were selected, and as the length of the frequency intervals, $T_w 0.0004$ time units were selected for

the waiting time of requests in the queue, and $T_U 0.0008$ time units for the time spent by requests in the system.

The analysis shows that in the first case, when the number of PMs changes from 3 to 5, the nature of the density distribution of the residence time T_u and waiting time T_w of requests does not change (see Fig. 3). Note that for clarity of histograms, it is desirable to have a large number of frequency intervals.

To obtain an objective picture, it is necessary to have a large sample of random variables, which is not always possible or advisable. The values of the lengths and number of frequency intervals are selected experimentally during several implementations of the simulation model or based on the expected values of the mathematical expectation and standard deviation of the corresponding random variable.

2.Requests received by the ISS are subject to an exponential distribution, and the service time is subject to a uniform distribution law.

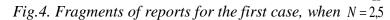
In the second case, the results of a simulation model of the functioning of the ISS were obtained - reports (fragments of reports are shown in Fig. 4, on the basis of which Table 2 was created) and histograms of the distribution densities of the residence time T_U and waiting time

 $T_{\rm w}$ of requests, at N = 2.5 (Fig. 5).

Table 2 reflects the dynamics of changes in the number of requests in the PM, the average queue length and the PM utilization rate depending on the number of PM (N) during the simulation for the second case.

Table 2

Dynamics of changes in system characteristics depending on the number of MHs for the second case


		e second case	
Number	Number of requests	Average queue	PM
of PM	to the PM	length (AVE.C)	utilization rate
	(ENTRIES)		(UTIL)
2	100002	2.000	1.000
3	100003	2.064	0.688
4	100002	2.056	0.514
5	100002	2.053	0.411

Analysis of the dynamics of changes in these characteristics shows that with an increase in the number of PMs from 2 to 5:

- as in the first case, the number of requests in the PM remains almost unchanged, i.e. the difference is 1;
- the average queue length increases, and the difference is 0.064;
- the coefficient of utilization of the PM decreases, and the difference is 0.589.

The analysis shows that in the second case, when the number of MHs changes from 3 to 5, the nature of the density distribution of the residence time T_U and waiting time T_W of requests does not change (see Fig. 5).

CH_1	3080 3078 1030	RY ENTRY(0) AVE.0 79 5 1529.0) RETRY 7 0	QUEUE CH_1	MAX C0 21				.CONT. AVE			
STORAGE UZEL		MAX. ENTRIES 2 2 100002				STORAGE UZEL				ENTRIES	AVL. AVE 1 2.0		IL. RETRI 688 0	
TABLE		EV. RANGE	RETRY	FREQUENC	Y CUM.%									
T_W	0.437 0.242	2	0.000		0.01	TABLE T_W	MEAN	STD.DEV		RANGE		RETRY	FREQUEN	CY CUM.
		0.000 -	0.001	8	0.02	1_W	0.000	0.000			0.000	0	05244	
		0.001 -	0.001	9	0.03				0.000	2	0.001		11138	96.3
			0.002		0.04				0.001	-	0.001		2714	99.0
		0.002 -	0.002		0.06				0.001		0.002		676	99.7
		0.002 -	0.003		0.08				0.002		0.002		176	
		0.003 -	0.003		0.09				0.002		0.002		25	
		0.003 -	0.004	11	0.10				0.002		0.003			99.9
TU	0.407 0.04	0.004	0	99903	100.00				0.003	-	0.003			99.9
1_0	0.437 0.242		0.001	6	0.01				0.003	-	0.004			100.0
		0.001 -	0.002	15	0.02	T 11	0.001	0.000	0.004			0	0	100.0
		0.002 -	0.001 0.002 0.002	25	0.05	T_U	01001	0.000		12	0.001		65006	72.2
		0.002 -	0.003	21	0.07				0.001	-	0.002		23400	
			0.004		0.09				0.002		0.002		1465	
			0.006	47	0.18				0.002		0.003		59	
			0.006		0.26				0.003		0.004		15	99.9
		0.006 -	0.007		0.35				0.004	-	0.005		10	100.0
QUEUE	MAX CONT. ENT				100.00 0) RETRY	QUEUE	MAX CO	NT. ENTRY	ENTRY	(0) AVE	CONT. AVE	.TIME	AVE. (-0) RETR
QUEUE CH_1			CONT. AVE.TIME	AVE.(-	0) RETRY		MAX CC 7							
CH_1	8 0 1000	RY ENTRY(0) AVE. 02 82358 0.	CONT. AVE.TIME 112 0.000	AVE.(- 0.0	0) RETRY 00 0	CH_1	7	0 100002	9382:	3 0	.029	0.000	0.00	0 0
CH_1 STORAGE	8 0 1000 CAP. REM. MIN	RY ENTRY(0) AVE. 02 82358 0. . MAX. ENTRIES	CONT. AVE.TIME 112 0.000 AVL. AVE.C. U	AVE.(- 0.0 TIL. RETR	0) RETRY 00 0 Y DELAY	CH_1 STORAGE	7 CAP. R	0 100002 EM. MIN.	9382: MAX. 1	3 0 ENTRIES	AVL. AVE	0.000 .c. UT	0.00 IL. RETRI	DO O
CH_1 STORAGE	8 0 1000	RY ENTRY(0) AVE. 02 82358 0. . MAX. ENTRIES	CONT. AVE.TIME 112 0.000 AVL. AVE.C. U	AVE.(- 0.0	0) RETRY 00 0 Y DELAY	CH_1	7 CAP. R	0 100002 EM. MIN.	9382: MAX. 1	3 0	AVL. AVE	0.000	0.00 IL. RETRI	DO O
CH_1 STORAGE UZEL	8 0 1000 CAP. REM. MIN 4 2 0	RY ENTRY(0) AVE. 02 82358 0. 1. MAX. ENTRIES 4 100002	CONT. AVE.TIME 112 0.000 AVL. AVE.C. U 1 2.056 0	AVE.(- 0.0 TIL. RETR .514 0	0) RETRY 00 0 Y DELAY 0	CH_1 STORAGE UZEL	7 CAP. R 5	0 100002 EM. MIN. 3 0	9382: MAX. I 5	3 0 ENTRIES 100002	AVL. AVE	0.000 .C. UI 53 0.	0.00 IL. RETR) 411 0	DO O
CH_1 STORAGE UZEL TABLE	8 0 1000 CAP. REM. MIN 4 2 0 MEAN STD.D	RY ENTRY(0) AVE. 02 82358 0. 1. MAX. ENTRIES 4 100002 EV. RANGE	CONT. AVE.TIME 112 0.000 AVL. AVE.C. U 1 2.056 0 RETR	AVE.(- 0.0 TIL. RETR .514 0 Y FREQUEN	0) RETRY 00 0 Y DELAY 0	CH_1 STORAGE UZEL TABLE	7 CAP. R 5 MEAN	0 100002 EM. MIN. 3 0 STD.DEV	9382: MAX. 1 5	3 0 ENTRIES 100002	.029 AVL. AVE 1 2.0	0.000 .C. UI 53 0.	0.00 IL. RETR) 411 0	DO O
CH_1 STORAGE UZEL	8 0 1000 CAP. REM. MIN 4 2 0	RY ENTRY(0) AVE. 02 82358 0. 1. MAX. ENTRIES 4 100002 EV. RANGE	CONT. AVE.TIME 112 0.000 AVL. AVE.C. U 1 2.056 0 RETF 0	AVE.(- 0.0 TIL. RETR .514 0 Y FREQUEN	0) RETRY 00 0 Y DELAY 0 CY CUM.%	CH_1 STORAGE UZEL	7 CAP. R 5	0 100002 KEM. MIN. 3 0 STD.DEV	9382: MAX. 1 5	3 0 ENTRIES 100002	.029 AVL. AVE 1 2.0	0.000 c. UT 53 0. RETRY 0	0.00 IL. RETRY 411 0 FREQUENC	OO O Y DELAY O CY CUM.
CH_1 STORAGE UZEL TABLE	8 0 1000 CAP. REM. MIN 4 2 0 MEAN STD.D	RY ENTRY(0) AVE. 02 82358 0. 1. MAX. ENTRIES 4 100002 EV. RANGE 0	CONT. AVE.TIME 112 0.000 AVL. AVE.C. U 1 2.056 0 RETF 0 0.000	AVE.(- 0.0 TIL. RETR .514 0 Y FREQUEN 98663	0) RETRY 00 0 Y DELAY 0 CY CUM.% 98.66	CH_1 STORAGE UZEL TABLE T_W	7 CAP. R 5 MEAN 0.000	0 100002 NEM. MIN. 3 0 STD.DEV 0.000	9382: MAX. 1 5	3 0 ENTRIES 100002 RANGE	.029 AVL. AVE 1 2.0 0.000	0.000 c. UT 53 0. RETRY 0	0.00 IL. RETRY 411 0 FREQUENC 99894	00 0 7 DELAY 0 CY CUM. 99.8
CH_1 STORAGE UZEL TABLE	8 0 1000 CAP. REM. MIN 4 2 0 MEAN STD.D	RY ENTRY(0) AVE. 02 82358 0. 1. MAX. ENTRIES 4 100002 EV. RANGE	CONT. AVE.TIME 112 0.000 AVL. AVE.C. U 1 2.056 0 RETE 0 0.000	AVE.(- 0.0 TIL. RETR .514 0 Y FREQUEN	0) RETRY 00 0 Y DELAY 0 CY CUM.%	CH_1 STORAGE UZEL TABLE T_W	7 CAP. R 5 MEAN 0.000	0 100002 NEM. MIN. 3 0 STD.DEV 0.000	9382: MAX. 1 5	3 0 ENTRIES 100002 RANGE	.029 AVL. AVE 1 2.0	0.000 c. UT 53 0. RETRY 0	0.00 IL. RETRI 411 0 FREQUENC 99894	00 0 7 DELAY 0 CY CUM. 99.8
CH_1 STORAGE UZEL TABLE	8 0 1000 CAP. REM. MIN 4 2 0 MEAN STD.D	RY ENTRY(0) AVE. 02 82358 0. 1. MAX. ENTRIES 4 100002 EV. RANGE 0	CONT. AVE.TIME 112 0.000 AVL. AVE.C. U 1 2.056 0 RETF 0 0.000	AVE.(- 0.0 TIL. RETR .514 0 Y FREQUEN 98663 1293	0) RETRY 00 0 Y DELAY 0 CY CUM.% 98.66	CH_1 STORAGE UZEL TABLE T_W	7 CAP. R 5 MEAN 0.000	0 100002 NEM. MIN. 3 0 STD.DEV 0.000	9382: MAX. 1 5	3 0 ENTRIES 100002 RANGE	.029 AVL. AVE 1 2.0 0.000	0.000 c. UT 53 0. RETRY 0	0.00 IL. RETRY 411 0 FREQUENC 99894 107	00 0 2 DELAY 0 22 CUM. 99.8 100.0
CH_1 STORAGE UZEL TABLE T_W	8 0 1000 CAP. REM. MIN 4 2 0 MEAN SID.D 0.000 0.00	RY ENTRY(0) AVE. 02 82358 0. 1. MAX. ENTRIES 4 100002 EV. RAINGE 0 - 0.000 - 0.001 -	CONT. AVE.TIME 112 0.000 AVL. AVE.C. U 1 2.056 0 0.000 0.001 0.001	AVE.(- 0.0 TIL. RETR .514 0 Y FREQUEN 98663 1293	0) RETRY 00 0 Y DELAY 0 CY CUM.% 98.66 99.95	CH_1 STORAGE UZEL TABLE T_W	7 CAP. R 5 MEAN 0.000	0 100002 NEM. MIN. 3 0 STD.DEV 0.000	9382: MAX. 1 5	3 0 ENTRIES 100002 RANGE	.029 AVL. AVE 1 2.0 0.000 0.001	0.000 c. UT 53 0. RETRY 0	0.00 IL. RETRY 411 0 FREQUENC 99894 107	00 0 2 DELAY 0 22 CUM. 99.8 100.0
CH_1 STORAGE UZEL TABLE T_W	8 0 1000 CAP. REM. MIN 4 2 0 MEAN STD.D	RY ENTRY(0) AVE. 02 82358 0. 1. MAX. ENTRIES 4 100002 EV. RAINGE 0 - 0.000 - 0.001 -	CONT. AVE.TIME 112 0.000 AVL. AVE.C. U 1 2.056 0 0.000 0.001 0.001 0.001	AVE.(- 0.0 TIL. RETR .514 0 Y FREQUEN 98663 1293 46	0) RETRY 00 0 Y DELAY 0 CY CUM.% 98.66 99.95 100.00	CH_1 STORAGE UZEL TABLE T_W T_U	7 CAP. R 5 MEAN 0.000 0.001	0 100002 EM. MIN. 3 0 STD.DEV 0.000	9382: MAX. I 5 0.000 0.001	3 0 ENTRIES 100002 RANGE - - -	.029 AVL. AVE 1 2.0 0.000 0.001 0.001	0.000 C. UT 53 0. RETRY 0 0	0.00 IL. RETR) 411 0 FREQUENC 99894 107 1	00 0 7 DELAY 0 2Y CUM. 99.8 100.0 100.0
CH_1 STORAGE UZEL TABLE T_W	8 0 1000 CAP. REM. MIN 4 2 0 MEAN SID.D 0.000 0.00	RY ENTRY(0) AVE. 02 82358 0. 1. MAX. ENTRIES 4 100002 EV. RANGE 0 - 0.000 - 0.000 - 0 - 0 - 0 - 0 -	CONT. AVE.TIME 112 0.000 AVL. AVE.C. U 1 2.056 0 0.001 0.001 0.001 0.001	AVE.(- 0.0 TIL. RETR .514 0 Y FREQUEN 98663 1293 46 84401	0) RETRY 00 0 Y DELAY 0 CY CUM.% 98.66 99.95 100.00 93.84	CH_1 STORAGE UZEL TABLE T_W T_U	7 CAP. R 5 MEAN 0.000 0.001	0 100002 EM. MIN. 3 0 STD.DEV 0.000	9382: MAX. I 5 0.000 0.001	3 0 ENTRIES 100002 RANGE - - -	.029 AVL. AVE 1 2.0 0.000 0.001 0.001 0.001	0.000 C. UT 53 0. RETRY 0 0	0.00 IL. RETR) 411 0 FREQUENC 99894 107 1 88876	00 0 7 DELAY 0 27 CUM. 99.8 100.0 100.0 98.7
CH_1 STORAGE UZEL TABLE T_W	8 0 1000 CAP. REM. MIN 4 2 0 MEAN SID.D 0.000 0.00	RY ENTRY(0) AVE. 02 82358 0. 1. MAX. ENTRIES 4 100002 EV. RAINGE 0 - 0.000 - 0.001 -	CONT. AVE.TIME 112 0.000 AVI. AVE.C. U 1 2.056 0 0.000 0.001 0.001 0.001 0.001	AVE.(- 0.0 TIL. RETR .514 0 Y FREQUEN 98663 1293 46	0) RETRY 00 0 Y DELAY 0 CY CUM.% 99.95 100.00 93.84 100.00	CH_1 STORAGE UZEL TABLE T_W T_U	7 CAP. R 5 MEAN 0.000	0 100002 EM. MIN. 3 0 STD.DEV 0.000	9382: MAX. I 5 0.000 0.001	3 0 ENTRIES 100002 RANGE - - -	.029 AVL. AVE 1 2.0 0.000 0.001 0.001 0.001	0.000 C. UT 53 0. RETRY 0 0	0.00 IL. RETR) 411 0 FREQUENC 99894 107 1	00 0 7 DELAY 0 27 CUM. 99.8 100.0 100.0 98.7

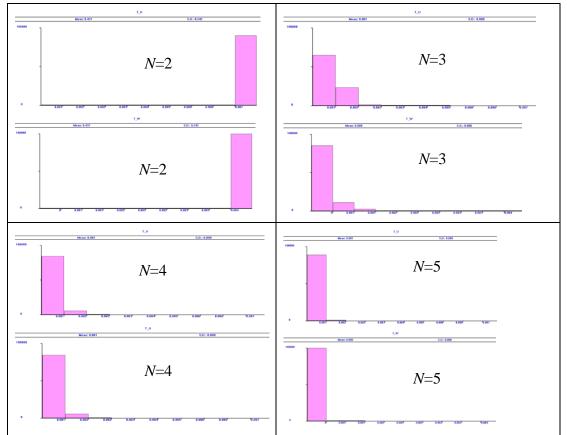


Fig.5. Histograms of distribution densities of residence time T_U and waiting time T_W of requests for the second case, with N = 2.5.

3. Receipts of requests to the ISS are subject to the exponential distribution law, and the service time is subject to the Erlang distribution law.

In the third case, the results of the ISS simulation model were obtained - reports (fragments of reports are shown in Fig. 6, on the basis of which Table 3 was created) and histograms of the density distribution of the residence time T_U and waiting time T_W of requests at N = 2.5 (Fig. 7).

Table 3 shows the dynamics of changes in the number of requests in the PM, the average queue length, and the coefficient of PM utilization from the number of PM (N) during the simulation for the third case.

Table 3

0			J J
	Number of request	s Average queue	PM
Number	to the PN	I length (AVE.C)	utilization rate
of PM	(ENTRIES)		(UTIL)
2	100002	2.000	1.000
3	100003	3.000	1.000
4	100004	3.999	1.000
5	100005	4.138	0.828

Dynamics of char	ges in	the characteris	stics of the l	MH systen	n for the	third case

Analysis of the dynamics of changes in these characteristics shows that with an increase in the number of PMs from 2 to 5:

- the number of requests in the PM increases slightly, and the difference is 3 requests;
- the average queue length increases, and the difference is 2.138;
- the coefficient of utilization of the PM decreases, and the difference is 0.172.

The analysis shows that in the third case, when the number of PMs changes from 2 to 4, the nature of the density distribution of the residence time T_{U} and waiting time T_{W} of requests does not change (see Fig. 7).

QUEUE CH_1	MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY 106678 106678 206679 2 53370.551 15.206 15.206 0	QUEUE CH_1	MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY 37288 37287 137289 8 18845.209 5.389 5.389 0
STORAGE UZEL	CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY 2 0 0 2 100002 1 2.000 1.000 0 106677	STORAGE UZEL	CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY 3 0 0 3 100003 1 3.000 1.000 0 37286
TABLE	MEAN STD.DEV. RANGE RETRY FREQUENCY CUM.%	TABLE	MEAN STD.DEV. RANGE RETRY FREQUENCY CUM.*
T_W	15.231 8.790 0 - 0.000 3 0.00	T_W	5.395 3.105 0 - 0.000 15 0.01
	0.000 - 0.001 3 0.01		0.000 0.001 0.000
	0.001 - 0.001 1 0.01		0.001 - 0.001 6 0.02
	0.001 - 0.002 0 0.01 0.002 - 0.002 2 0.01		0.001 - 0.002 0 0.02
	0.002 - 0.002 2 0.01 0.002 - 0.002 3 0.01 0.002 - 0.003 5 0.02		0.002 - 0.002 1 0.03 0.002 - 0.002 3 0.03
	0.002 - 0.003 5 0.02		0.002 - 0.003 2 0.03
	0.003 - 0.003 5 0.02		0.003 - 0.003 1 0.03
	0.004 - 99978 100.00		0.003 - 0.004 3 0.03 0.004 - 99967 100.00
T_U	15.238 8.788 0	τu	0.004 99967 100.00 5.400 3.102 0
		-	0.001 10 0.01
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.001 - 0.002 7 0.02 0.002 - 0.002 2 0.02
	0.002 - 0.003 1 0.01		0.002 - 0.003 1 0.02
	0.003 - 0.004 10 0.02		0.003 - 0.004 5 0.03
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.004 - 99967 100.00 5.400 3.102 - 0.001 10 0.01 0.001 - 0.002 7 0.02 0.002 - 0.002 2 0.02 0.002 - 0.004 10 0.03 0.005 - 0.005 3 0.03 0.006 - 0.006 4 0.04 0.006 - 0.006 5 0.04 0.006 - 0.007 7 0.05 0.007 - 9007 100.00 MMX CONT. ENTRY FUC VNT. AVE. 119 ENTRY
	0.006 - 0.006 0 0.02		0.006 - 0.006 5 0.04
	0.006 - 0.007 1 0.02 0.007 - 89998 100.00		0.006 - 0.007 7 0.05
			0.007 90007 100.00
CH_1	MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY 3214 3192 103195 39 1802.553 0.514 0.515 0	QUEUE CH_1	MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY 44 6 100010 38925 2.496 0.001 0.001 0
STORAGE	CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY	STORAGE	CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY
UZEL	4 0 0 4 100004 1 3.999 1.000 0 3191	UZEL	5 0 0 5 100005 1 4.138 0.828 0 5
TABLE	MEAN STD.DEV. RANGE RETRY FREQUENCY CUM.*	TABLE	MEAN STD.DEV. RANGE RETRY FREQUENCY CUM.*
T_W	0.516 0.274 0 0.000 78 0.08	T_W	0.001 0.001 0
	0.000 0.204 - 0.000 78 0.08 0.000 - 0.001 69 0.15 0.001 - 0.001 70 0.22 0.001 - 0.002 64 0.28 0.002 - 0.002 62 0.39		- 0.000 56268 56.27
	0.001 - 0.001 70 0.22		0.000 - 0.001 13446 69.71 0.001 - 0.001 9146 78.86
	0.001 - 0.002 64 0.28 0.002 - 0.002 62 0.34		0.001 - 0.002 6136 84.99
	0.002 - 0.002 62 0.34		0.002 - 0.002 4352 89.34
	0.002 - 0.003 72 0.47		0.002 - 0.002 3154 92.50
	0.003 - 0.003 62 0.53 0.003 - 0.004 93 0.62		0.002 - 0.003 2085 94.58 0.003 - 0.003 1371 95.95
	0.004 - 99381 100.00 0.517 0.274 0		0.003 - 0.004 1055 97.01
T_U	0.517 0.274 0		0.004 - 2991 100.00
	- 0.001 28 0.03 0.001 - 0.002 67 0.11	T_U	0.002 0.001 _ 0 0.001 18915 20.98
	0.002 - 0.002 103 0.22		0.001 - 0.002 27126 51.07
	0.002 - 0.003 95 0.33		0.002 - 0.002 19562 72.76
	0.003 - 0.004 120 0.46 0.004 - 0.005 146 0.62		0.002 - 0.003 11469 85.48
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.003 - 0.004 6159 92.32 0.004 - 0.005 3217 95.88
	0.006 - 0.006 133 0.92		0.005 - 0.006 1694 97.76
	0.006 - 0.007 141 1.08		0.006 - 0.006 1015 98.89
	0.007 88955 100.00		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			0.007 - 477 100.00

Fig.6. Fragments of reports for the first case, when N = 2,5

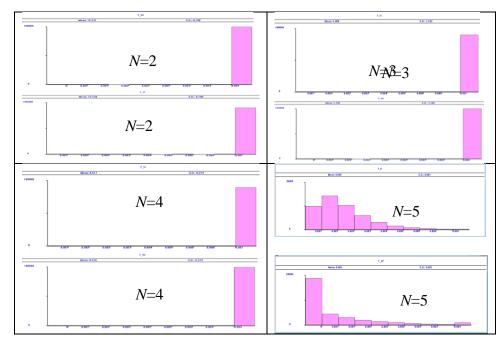


Fig.7. Histograms of distribution densities of residence time T_{U} and waiting time T_{W} of requests

for the third case, with N = 2.5.

Based on Tables 1-3, the dynamics of changes in the differences in the number of requests in the PM, the average queue length and the PM utilization rate for three cases at N = 2.5.

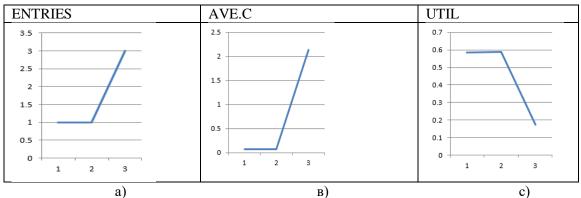


Fig. 8. Dynamics of changes in the differences in the number of requests in the PM (a), average queue

lengths (b), and PM utilization rates (c) for three cases at N = 2,5.

The results obtained from Tables 1-3 and Fig. 8 show that with an increase in the number of PMs from 2 to 5 for three cases:

- the nature of the change in the differences in the number of requests in the PM is 1; 1 and 3;
- the nature of the change in the differences in the average queue length is 0.071; 0.064; 2.138;
- the nature of the change in the differences in the utilization rate of the PM is 0.586; 0.589; 0.172.

4. CONCLUSIONS AND PROSPECTS FOR FURTHER RESEARCH

The current problem of developing an algorithm and simulation model is being solved, the results of the simulation model are analyzed to determine the main characteristics of the ISS, providing the opportunity to completely close, with the help of a security system, all possible channels of manifestation of threats, by ensuring control of the transition of all requests of the UA through the PM.

The scientific novelty of the results obtained lies in the fact that for the first time an algorithm and simulation models were proposed and developed, a methodology for the development of ISS based on the analysis of the structural and temporal characteristics of the ISS from the UA, as a single-phase multi-channel QS with an unlimited volume of BM with wide values of input and output parameters.

The experiments carried out based on the developed algorithm and model confirmed the expected results when analyzing the characteristics of the ISS from the UA. The practical significance of the results obtained lies in the fact that these results can be used for the practical construction of new or modification of existing ISS in corporate service networks for various purposes, including higher educational institutions.

This work is one of the approaches to generalizing the problems under consideration for systems with an unlimited volume of BM.

Prospects for further research include research and development of the principles of hardware and software implementation of ISS from UA with an unlimited volume of BM in corporate service networks.

REFERENCES (TRANSLATED AND TRANSLITERATED)

- [1] B.G. Ismailov. Modelling and analysis of the security system information in service networks. *Problemi informatizatsíi ta upravlinnya*.Vol.1, №69, P.46-53..2022. doi:10.1 837 2/2073-4751.6 9.16812. (in English).
- [2] L.Fan, Y.Wang, X.Cheng, J.Li, S.Jin. Privacy theft malware multi-process collaboration analysis. *Security and Communication Networks*.8 (1): pp.51–67.2013. doi:10.10.02/sec. 705. (in English).
- [3] E.Gal-Or, and A.Ghose, The Economic Incentives for Sharing Security Information. *Information Systems Research*, 16, pp.186-208. 2005. https://doi.org/10.1287/isre.1050.0053. (in English).
- [4] L.A. Gordon, M. P. Loeb. The Economics of Information Security Investment. ACM Transactions on Information and System Security. 5 (4): November 2002, pp.438–457. doi:10.1145/58 127 1.5812 74. S2CID 1500788. (in English).
- [5] K. Matsuura, Productivity Space of Information Security in an Extension of the Gordon-Loeb's Investment Model. In: Johnson, M.E., Ed., *Managing Information Risk and the Economics of Security*, Springer, Boston, pp.99-119. 2009. https://doi.org/10.1007/978-0-387-09762-6_5. (in English).
- [6] S. E.Fienberg, A. B. Slavković, Data Privacy and Confidentiality. *International Encyclopedia of Statistical Science*, pp. 342–345, 2011. doi:10.1007/978-3-642-04898-2_202. (in English).
- [7] V. Pevnev. Model Threats and Ensure the Integrity of Information. Systems and Technologies. 2 (56), pp.80-95. 2018. doi:10.32836/2521-66 43-2018.2-56.6. (in English).
- [8] M. Ezhei, and B.T.Ladani, Information Sharing vs. Privacy: A Game Theoretic Analysis. *Expert Systems with Applications*, 88, 327-337. 2017. https://doi.org/10.1016/j.eswa.2017.06.042. (in English).
- [9] Fowler Kevvie Developing a Computer Security Incident Response Plan. Data Breach Preparation and Response, Elsevier, pp. 49–77, retrieved June 5, 2021.doi:10.1016/b978-0-12-803451-4.00003-4. (in English).
- [10] D. B. Parker. A Guide to Selecting and Implementing Security Controls. *Information Systems Security*. 3 (2): pp.75-86. 1994.doi:10.1080/10658989 4093 42459. (in English).
- H.S.Venter, J.H.P. Eloff, A taxonomy for information security technologies. *Computers & Security*. 22 (4): pp.299-307. 2003. doi: 10.1016/S0167-4048(03)00406-1. (in English).
- [12] Authorization and approval program. Internal Controls Policies and Procedures, Hoboken, NJ, US: John Wiley & Sons, Inc., October 23, 2015pp. 69–72, retrieved June1, 2021.doi:10.1002/9781119 20 39 64.ch10.(in English).
- [13] A. Almehmadi, El-Khatib Kh. Proceedings of the 6th International Conference on Security of Information and Networks. Sin '13.US: ACMPress. New York, 2013. pp.363-367. doi:10.1145/2 52 3514.25 23612. (in English).
- [14] G.Loukas, G.Oke, Protection Against Denial of Service Attacks: A Survey. Comput. J. 53 (7): September 2018 [August 2009] pp.1020–1037. Archived from the original on March 24, 2012. Retrieved August 28, 2015. doi: 10.1 093/com jnl/bxp078. (in English).
- T. Keyser. Security policy. The Information Governance Toolkit, CRC Press, pp. 57-62, April 19 2018. retrieved May 28, 2021. doi:10.1201/978 1315385488-13. (in English).
- [16] J. E. Boritz. IS Practitioners' Views on Core Concepts of Information Integrity. *International Journal of Accounting Information Systems*. Elsevier 6 (4): pp.260–279. 2005.doi:10.1016/ j. accinf. 2005. 07.001. (in English).

Text of the article was accepted by Editorial Team 22.06.2024

АНАЛІЗ РЕЗУЛЬТАТІВ ІМІТАЦІЙНОГО МОДЕЛЮВАННЯ СИСТЕМИ ЗАХИСТУ ІНФОРМАЦІЇ У КОРПОРАТИВНИХ МЕРЕЖАХ ЗАКЛАДІВ ВИЩОЇ ОСВІТИ

Вагіф Касумов

доктор технічних наук, професор, завідувач кафедри «Комп'ютерні технології» Азербайджанського технічного університету, м. Баку, Азербайджан ORCID ID 0000-0003-3192-4225 vaqif.qasimov@aztu.edu.az

Балами Ісмайлів

доктор технічних наук, професор кафедри «Комп'ютерні системи та програмування» Національної академії авіації, м. Баку, Азербайджан ORCID ID 0009-0002-3013-9161 balemi@rambler.ru

Анотація. Аналіз показує, що недостатній рівень інформаційної безпеки мереж обслуговування є основною причиною величезних збитків для підприємств. Незважаючи на появу низки робіт щодо вирішення цієї проблеми, єдиної системи оцінки інформаційної безпеки на сьогоднішні немає. Це свідчить про те, що ця проблема ще недостатньо вивчена та актуальна. Ця робота є одним із кроків до створення системи оцінки інформаційної безпеки в мережах обслуговування.

Метою роботи є розробка алгоритму та імітаційної моделі, аналіз результатів імітаційної моделі для визначення основних характеристик системи захисту інформації (C3I), що забезпечує можливість повністю закрити всі можливі канали загроз шляхом контролю всіх несанкціонованих запитів доступу (НЗД) через механізм захисту (МЗ).

Для вирішення задачі застосовано метод моделювання з використанням принципів систем масового обслуговування (СМО). Цей метод дає можливість отримати основні характеристики СЗІ від НЗД з необмеженим обсягом буферної пам'яті (БП). Запропоновано моделі, алгоритм і методологію розробки СЗІ з НЗД, яка розглядається як однофазна багатоканальна СМО з необмеженим обсягом БП. Процес отримання результатів моделювання було реалізовано в системі моделювання GPSS World і проведено порівняльний аналіз основних характеристик СЗІ для різних законів розподілу вихідних параметрів. Водночас НЗД запити були найпростішими потоками, а час обслуговування підпорядковувався експоненційному, константному та Ерланговому законам розподілу.

Проведені експерименти на основі запропонованих моделей та алгоритму аналізу характеристик СЗІ з НЗД як однофазної багатоканальної СМО з необмеженим часом очікування запитів у черзі підтвердили очікувані результати. Отримані результати можуть бути використані для побудови нових або модифікації існуючих ІКС у корпоративних мережах для обслуговування об'єктів різного призначення. Дана робота є одним з підходів до узагальнення задач, що розглядаються, для систем з необмеженим об'ємом БП. Перспективи подальших досліджень полягають у дослідженні та розробці принципів апаратно-програмної реалізації СЗІ в мережах обслуговування.

Ключові слова: несанкціоновані запити доступу (НЗД); системи захисту інформації (СЗІ); інформаційна безпека; системи масового обслуговування (СМО); механізм захисту (МЗ); імітаційне моделювання.

(CC) BY-NC-SA

This work is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.