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Abstract. The focus of this study to measure the varying irreversibility of stock markets. A fundamental
idea of this study is that financial systems are complex and nonlinear systems that are presented to be non-
Gaussian fractal and chaotic. Their complexity and different aspects of nonlinear properties, such as time
irreversibility, vary over time and for a long-range of scales. Therefore, our work presents approaches to
measure the complexity and irreversibility of the time series. To the presented methods we include Guzik’s
index, Porta’s index, Costa’s index, based on complex networks measures, Multiscale time irreversibility index
and based on permutation patterns measures. Our study presents that the corresponding measures can be used
as indicators or indicator-precursors of crisis states in stock markets.

1 Introduction

Complex systems are open systems that exchange energy,
matter, and information with the environment. Investigat-
ing complex systems in the natural sciences, Prigogine
made a fundamental generalization, indicating the need
for consideration of the phenomena of irreversibility and
non-equilibrium as principles of selection of space-time
structures that are implemented in practice [1]. Later it be-
came clear that this generalization extends to complex sys-
tems of another nature: social, economic, biomedical, etc.
[2]. Prigogine believed that the most important changes in
the modern scientific revolution are related to the removal
of previous restrictions in the scientific understanding of
time. The nonlinear world is characterized by features of
temporality, i.e., irreversibility and transience of processes
and phenomena. Self-organization is considered as a spon-
taneous process of formation of integrating complex sys-
tems. It is due to the ambiguity of choice at bifurcation
points that time in theories of self-organization becomes
truly irreversible. In contrast to linear dynamic theories
– classical, relativistic, quantum (where time is reversed),
in the thermodynamics of dissipative structures created by
Prigogine, time ceases to be a simple parameter and be-
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comes a concept that expresses the pace and direction of
events.

Thus, the irreversibility of time is a fundamental prop-
erty of non-equilibrium dissipative systems, and its loss
may indicate the development of destructive processes
[2, 3].

Considering the statistical properties of a signal under
study, its evolution could be called irreversible if there is
the lack of invariance, i.e., the same signal would have
been obtained if we measured it in the opposite direc-
tion. The function f could be applied to find character-
istics that differ forward and backward versions, i.e., time
series would be irreversible if f (Xd) , f (Xr). The main
idea of this definition there is no any restrictions on f .

Our study implies that a stationary process X is called
statistically inverse in time if the probability distributions
of the forward and backward in time systems are approx-
imately the same [4–6]. The irreversibility of time series
indicates the presence of nonlinear dependencies (mem-
ory) [7] in the dynamics of a system far from equilibrium,
including non-Gaussian random processes and dissipative
chaos. Since the definition of the irreversibility of the time
series is formal, there is no a priori optimal algorithm for
its quantification. Several methods for measuring the irre-
versibility of time have been proposed [2–4, 8–13]. Such
methods significant as their purpose to deal with signals
that exclude linear Gaussian random processes and, there
by, allow to quantify the degree of predictability in the sys-
tem.
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In the first group of methods, the symbolization of time
series is performed, and then the analysis is performed by
statistical comparison of the appearance of a string of sym-
bols in the forward and reverse directions [9]. Sometimes
additional compression algorithms are used [8]. An im-
portant step for this group is the symbolization – the con-
version of the time series into a character series requires
additional special information (e.g., division of the range
or size of the alphabet) and, therefore, contains the prob-
lem of the algorithm’s dependence on these additional pa-
rameters. The second problem arises when considering
the large-scale invariance of complex signals. Since the
procedures of typical symbolizations are local, taking into
account different scales can cause some difficulties [3].

Another group of methods in formalizing the index of
irreversibility does not use the symbolization procedure
but is based on the use of real values of the time series
or returns.

One such approaches is based on the asymmetry of the
distribution of points of the Poincare map, built on the ba-
sis of the values of the analyzed time series [10, 13].

Recently, a fundamentally new approach to measur-
ing the irreversibility of time series has been proposed,
which uses the methods of complex network theory [4, 12]
and which combines two tools: the algorithm for visibil-
ity of time series recovery into a complex network and
the Kullbak-Leibler divergence algorithm [12]. The first
forms a directional network according to the geometric
criterion. The degree of irreversibility of the series is then
estimated by the Kullbak-Leibler divergence (i.e., the res-
olution) between the distribution of the input and output
stages of the associated count. This method is computa-
tionally efficient, does not require any special symboliza-
tion of the process, and, according to the authors, naturally
takes into account multiscale.

In this study, we apply irreversibility analysis and con-
struct indicators or indicators-precursors of crashes and
critical events, which dynamics is associated with luck of
irreversibility the system. To these measures we include
Guzik’s index, Porta’s index, Costa’s index, based on com-
plex networks, multiscale time irreversibility index with
measure based on ordinal patterns.

For analyzing and explaining basic characteristics of
stock market with time irreversibility measures, we have
chosen Dow Jones Industrial Average index (DJIA) as the
most quoted financial barometer in the world. In order to
have better look on its intraday dynamics, we have sepa-
rated its time series into two parts: from 2 January 1920 to
3 January 1983 and second part from 4 January 1983 to 3
March 2021. Both periods of daily values have been ob-
tained through Yahoo Finance (http://finance.yahoo.com/)
and Investing.com (https://www.investing.com/).

Regarding our previous studies [14–23], we have em-
phasized 30 crisis events that were classified as crashes
and critical events. According to classification:

• Crashes are short, time-localized drops, with strong los-
ing of price each day.

• Critical events are those falls that, during their existence,
have not had such serious changes in price as crashes.

Table 1 shows the major crashes and critical events re-
lated to our classification.

Table 1: Major Historical Corrections of the DJIA price
since 1920

№ Interval Days in Decline,
correction %

1 03.09.1929-29.10.1929 41 39.64
2 01.03.1938-31.03.1938 23 24.15
3 08.04.1940-05.06.1940 42 25.1
4 21.08.1946-10.09.1946 14 16.35
5 30.07.1957-22.10.1957 60 17.51
6 19.03.1962-28.05.1962 50 19.91
7 18.07.1966-07.10.1966 59 12.84
8 09.04.1970-26.05.1970 34 20.35
9 24.10.1974-04.10.1974 52 27.45
10 02.10.1987-19.10.1987 12 34.16
11 17.07.1990-23.08.1990 28 17.21
12 01.10.1997-21.10.1997 15 12.43
13 17.08.1998-31.08.1998 11 18.44
14 14.08.2002-01.10.2002 34 19.52
15 16.10.2008-15.12.2008 42 30.21
16 09.08.2011-22.09.2011 32 11.94
17 18.08.2015-25.08.2015 6 10.53
18 29.12.2015-20.01.2016 16 11.02
19 03.12.2018-24.12.2018 15 15.62
20 04.03.2020-23.03.2020 13 31.38

As it is seen from the Table, during DJIA existence,
many crashes and critical events shook it. According to
our classification, events with number (1, 10, 13, 15, 20)
are crashes, all the rest – critical events.

The calculations of indicators for them will be carried
out within the sliding window approach. According to the
procedure, we emphasize the frame of a predefined length
in which the calculation of the corresponding measure is
obtained. For this fragment measure of irreversibility is
obtained regarding normalized returns, where returns are
calculated as

G (t) = ln x (t + ∆t) − ln x (t) � [x (t + ∆t) − x (t)] /x (t)
(1)

and normalized (standardized) returns as

g(t) � [G (t) − 〈G〉] /σ, (2)

where σ ≡
√
〈G2〉 − 〈G〉2 is the standard deviation of G,

∆t is the time shift (in our case ∆t = 1), and 〈 . . . 〉 is the
average over studied time period.

Then, the time window is shifted along the time by a
predefined value, and the procedure is repeated until the
entire series is exhausted. Comparing the calculated mea-
sure of irreversibility (asymmetry) and the actual time se-
ries of DJIA, we can analyze changes of complexity in
the system. Our measures can be called indicators or pre-
cursors if they behave in a definite way for all periods
of crashes, for example, decreases or increases during the
pre-crash or pre-critical period. For our calculations time
frame with the length 500 and step 1 are seemed to be the
most reasonable parameters.
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2 Assessing financial crises throughout
irreversibility analysis

2.1 Irreversible complexity measures based on
Poincaré diagrams

The Poincaré diagram for the time series is a graph on the
x axis of which the normalized returns for current time g(t)
are plotted, and subsequent values g(t +1) on the y axis. In
Figure 1 the Poincaré diagram for the initial and shuffled
series of the DJIA is shown.

(a)

(b)

Figure 1: The Poincaré diagram (a) and the dependence
of the Costa‘s index that will be described further on time
and scale (b)

All consequent values that are equal to each other
(g(t) = g(t + 1)) are located on the line of identity (LI). In-
tervals, representing increasing in returns, above LI (g(t) <
g(t + 1)), whereas shortenings of two succeeding returns
represent points below this line (g(t) > g(t + 1)). By as-
sessing the asymmetry of points in the diagram, further,
we will present quantitative measures for varying degree
of irreversibility in the DJIA.

2.1.1 Guzik’s index

Guzik’s index (GI) was defined as the distance of points
above LI to LI divided by the distance of all points in

Poincaré plot except those that are located on LI [10, 24].
Specifically,

GI =

∑a
i=1

(
D+

i

)2∑m
i=1 (Di)2 , (3)

where a = C(P+
i ) means the number of points above

LI; m = C(P+
i ) + C(P−i ) means the number of points in

Poincaré plot except those which are not on LI; D+
i is the

distance of points above the line to itself, and Di is the dis-
tance of point Pi (g(i), g(i + 1)) to LI which can be defined
as

Di =
|g(i + 1) − g(i)|

√
2

. (4)

In fugure 2 is illustrated GI for two periods of the
DJIA.

As we can see from illustration above, GI for crashes
and critical events noticeably falling before deviant event
and rising during emerging crises, which makes it as an
excellent indicator-precursor of abnormal events.

2.1.2 Porta’s index

Porta’s index (PI) [13] was defined as the number of points
below LI divided by the total number of points in Poincaré
plot except those that are located on LI, specifically

PI =
b
m
, (5)

where b = C(P−i ) is the number of points below LI, and
m = C(P+

i ) + C(P−i ) is the total number of points below
and above LI.

In figure 3 is illustrated PI for two periods of DJIA.
As we can see, according to Porta’s index, irreversibil-

ity decreases during crash and critical events similarly to
previous index which makes it appropriate indicator.

2.1.3 Costa’s index

Costa’s index represents a simplified version of [24] where
number of increments (x(i + 1)− x(i) > 0) and decrements
(x(i + 1) − x(i) < 0) are taken into account. They are
presented to be symmetric if equal to each other. The pro-
cedure is implemented for coarse-grained time series. For
scale τ, we consider the time series Gτ = {g(i)} , g(i) =

x(i + τ)− x(i), 1 ≤ i ≤ N − τ. The Costa’s index [3], which
displays the asymmetry of the probability distribution of
positive and negative returns, is calculated by the formula:

CIτ =

∑N−τ
i=1 H

[
−g(i)

]
−

∑N−τ
i=1 H

[
g(i)

]
N − τ

. (6)

The generelized Costa’s index according to can be de-
fined as

CI =
1
L

L∑
τ=1

|CIτ|, (7)

where L is the maximal scale.
In figure 4 CI presents the similar pehavior for the two

periods of DJIA as in previous two measures.
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(a)

(b)

Figure 2: Guzik’s index with corresponding first (a) and second (b) periods of the DJIA time series

2.2 Complex network methods

Visibility graphs (VGs) are based on a simple map-
ping from the time series to the network domain ex-
ploiting the local convexity of scalar-valued time series
{xi | i = 1, . . . ,N} where each observation xi is a vertex in
a complex network. Two vertices i and j are linked by an
edge (i, j) if for all vertices k with ti < tk < t j the following
condition is applied [25]:

xk < x j + (xi − x j)
t j − tk
t j − ti

. (8)

This is, the adjacency matrix (Ai j) of the following
undirected and unweighted VG is presented as:

A(VG)
i j = A(VG)

ji =

j−1∏
k=i+1

H

(
xk < x j + (xi − x j)

t j − tk
t j − ti

)
, (9)

whereH(·) is the Heaviside function.
Horizontal visibility graphs (HVGs) provide a simpli-

fied version of this algorithm [26]. For a given time series,
the vertex sets of VG and HVG are the same, whereas the
edge set of the HVG maps the mutual horizontal visibility
of two observations xi and x j, i.e., there is an edge (i, j) if

xk < min(xi, x j) for all k with ti < tk < t j, so that

A(VG)
i j = A(VG)

ji =

j−1∏
k=i+1

H(xi − xk)H(x j − xk). (10)

VG and HVG capture essentially the same properties
of the system under study (e.g., regarding fractal proper-
ties of a time series), since the HVG is a subgraph of the
VG with the same vertex set, but possessing only a subset
of the VG’s edges. Note that the VG is invariant under a
superposition of linear trends, whereas the HVG is not.

Since the definition of VGs and HVGs takes the timing
(or at least time-ordering) of observations explicitly into
account, the direction of time is intrinsically interwoven
with the resulting network structure. To account for this
fact, we define a set of novel statistical network quantifiers
based on two simple vertex characteristics:

(i) As the number of edges incident to a given vertex
i can be defined as kr

i =
∑

j Ai j, for a (H)VG, we
rewrite this quantity for a vertex of time ti, regarding

4
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(a)

(b)

Figure 3: Dynamics of Porta’s index for first (a) and second (b) periods of DJIA time series

its past and future vertices (prices):

kr
i =

∑
j<i

Ai j, (11)

ka
i =

∑
j>i

Ai j, (12)

where ki = kr
i + ka

i , and kr
i with ka

i referred to as the
retarded and advanced degrees. As it is defined in
[12], following measures correspond to the in- and
out-degrees of time-directed (H)VGs.

(ii) The local clustering coefficient
Ci =

(
ki
2

)−1 ∑
j,k Ai jA jkAki is another vertex property

of higher order characterizing the neighborhood
structure of vertex i [27]. Similarly to (11) and (12),
for studying the connectivity due to past and future
prices, we rewrite the standard coefficient as the
retarded and advanced local clustering coefficients

Cr
i =

(
kr

i

2

)−1 ∑
j<i,k<i

Ai jA jkAki, (13)

Ca
i =

(
ka

i

2

)−1 ∑
j>i,k>i

Ai jA jkAki, (14)

According to graph-based method, we will utilize the
probability density functions (PDFs) of (11)-(14). If our

system is presented to be time-reversible, we conjecture
that probability distributions of forward and backward in
time characteristics should be the same. For irreversible
processes, we expect to find statistical non-equivalence.
According to [12], this deviation will be defined through
Kullback-Leibler divergence:

DKL(p ‖ q) =

N∑
i=1

p (xi) · log
p (xi)
q (xi)

, (15)

where, in our case, p responds to a distribution of the re-
tarded characteristics and q is of the advanced.

Figure 5 presents DKL measure for the distribution of
degrees and local clustering coefficients.

As it can be seen for figure 5 and b, both irreversibility
measures for degrees and local clustering decrease during
crashes and critical events which tells about luck of irre-
versibility during them. Also, it is shown in figure 4 that
the first period of the DJIA is presented to be more re-
versible as the distance between distribution of degrees is
close to zero for almost the entire period. Local clustering
coefficient is seemed to be more robust and informative
comparing to degree.
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(a)

(b)

Figure 4: Dynamics of Costa’s index for first (a) and second (b) periods of DJIA time series

2.3 Multiscale time irreversibility index

For the following procedure [24], first of all, we need to
construct goarse-grained time series which can be defined
as

yτ( j) =
1
τ

jτ∑
i=( j−1)τ+1

g(i), for 1 ≤ j ≤
N
τ
. (16)

Then, using a statistical physics approach, we make
the simplifying assumptions that each transition (increase
or decrease of yτ( j)) is independent and requires a specific
amount of “energy” E. The probability density function
of this class of system [28] can be assumed to follow ρ ∝
exp(−βE − γQ) where Q represents the non-equilibrium
heat flux across the boundary of the system, and β and γ
are the Lagrange multipliers derived from the constraints
on the average value of the energy E per transition and the
average contribution of each transition to the heat flux Q.

Since the time reversal operation on the original finan-
cial index time series inverts an increase to a decrease and
vice versa, the difference between the average energy for
the activation of information rate, i.e., 〈 βE + γQ〉yτ>0, and

the relaxation of information rate, i.e., 〈 βE + γQ〉yτ<0, can
be used as measurement of time reversal asymmetry.

Taking into consideration that the assumption of the
distribution function ρ links the energy to the empirical
distribution, we, following , define the next measure of
temporal irreversibility:

a(τ) =

∫ ∞
0

[
ρ(yτ) ln ρ(yτ) − ρ(−yτ) ln ρ(−yτ)

]2 dyτ∫ ∞
−∞

ρ(yτ) ln ρ(yτ)dyτ
(17)

The time series is called reversivle if a(τ) = 0.
Sometimes it is important for us to know not only the

degree of irreversibility but also whether it reversed in time
or not. For this purpose, we will replace equation (17) by
the following one:

A(τ) =

∫ ∞
0

[
ρ(yτ) ln ρ(yτ) − ρ(−yτ) ln ρ(−yτ)

]
dyτ∫ ∞

−∞
ρ(yτ) ln ρ(yτ)dyτ

(18)

The time series is said to be irreversible for all scale τ
if A(τ) > 0. In case when A(τ) = 0, the time series may be
reversible or not for scale τ.
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(a)

(b)

(c)

(d)

Figure 5: Dynamics of graph-based time irreversibility
measures for the first (a, b) and second (c, d) periods of
DJIA time series

For the analysis of discrete values, equation (18) can
be presented as:

Â(τ) =

∑
yτ>0 Pr(yτ) ln

[
Pr(yτ)

]∑
yτ Pr(yτ) ln

[
Pr(yτ)

] − ∑
yτ<0 Pr(yτ) ln

[
Pr(yτ)

]∑
yτ Pr(yτ) ln

[
Pr(yτ)

] .
(19)

The generalized multiscale asymmetry index (AI) is
defined as the summation of Â(τ) obtained for a predefined
range of scales, i.e.,

AI =

L∑
τ=1

Â(τ). (20)

The figures illustrate that time series are significantly
irreversible. For initial time series (for approximately 5-
10 scales), the transition of prices is presented to be re-
versible (symmetric). After it, transitions presented to be
asymmetric. Draws attention and noticeable unevenness
introduced measures, which correlate with the fluctuations
of the input time series. Identifying significant changes in
the time series and comparing them with the correspond-
ing changes of non-reversible measures of complexity, it
is possible to construct the corresponding indicators.

2.4 Time series irreversibility measure based on
permutation patterns

The idea of analyzing the permutation patterns (PP) was
initially introduced by Bandt and Pompe [29] to provide
researchers with a simple and efficient tool to character-
ize the complexity of the real systems dynamics. With
respect to other approaches, as entropies, fractal dimen-
sions, or Lyapunov exponents, it avoids amplitude thresh-
old and instead dealing with casual values inhereted from
time series dynamics, deals with ordinal permutation pat-
terns [30]. Their frequencies allow us to distinguish deter-
ministic processes from completely random.

The calculations of PP assume that the time series is
partitioned with the embedding dimension dE (number of
elements to be compared) and the embedding delay τ (time
separation between elements). In our opinion, dE ∈ {3, 4}
and τ ∈ {2, 3} are the best parameters that encapsulate all
the necessary quantitative information.

Further, all embedded patterns are assigned to their or-
dinal rankings. As an example, let us consider a fragment
of the DJIA time series for period 18.08.2015-26.08.2015:

X = {17511.34, 17348.73, 16990.69, 16459.75,
15871.35, 15666.44, 16285.51}.

According to mentioned steps, we will construct em-
bedded matrix of overlapping column vectors with dE = 3
and τ = 2. Our sampled data is partitioned as follows:

XdE ,τ
t =

17511.34 16990.69 15871.35
17348.73 16459.75 15666.44
16990.69 15871.35 16285.51

 . (21)

After it, our time-delayed vectors are mapped to per-
mutations or ordinal patterns of the same size. Our exam-
ple consists 3! = 6 different ordinal patterns in total:

π1 = {0, 1, 2}
π2 = {0, 2, 1}
π3 = {1, 0, 2}
π4 = {1, 2, 0}
π5 = {2, 0, 1}
π6 = {2, 1, 0}

7
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(a)

(b)

(c)

Figure 6: Dynamics of asymmetry index for first (a) and second (b) periods.

As an example, the corresponding permu-
tation of the first column from (21) would be
φ([17511.34, 17348.73, 16990.69]) = 210 since
x(3) ≤ x(2) ≤ x(1). Therefore, after mapping from
the time-series data into a series of permutations

(φ : RdE → S dE ), we obtain the ordinal matrix:

2 2 1
1 1 0
0 0 2

 . (22)

8
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(a)

(b)

Figure 7: Dynamics of permutation-based time irreversibility measure for first (a) and second (b) periods.

Finally, the probability of each pattern is calculated as

p(π) =
#{t ≤ N − (dE − 1)τ, φ(XdE ,τ

t ) = π}

N − (dE − 1)τ
, (23)

where # {·} denotes the cardinality of a set, and permuta-
tion entropy is calculated regarding a probability distribu-
tion P, whose elements pi ≡ p(πi) are the probabilities
associated with the ith permutation pattern, i = 1, . . . , dE!:

S [P] = −

dE !∑
i=1

pi log2 pi. (24)

Interesting for us time irreversibility of permutation
patterns is not related on (24), but on the probability distri-
bution of ordinal patterns. That is, we find probabilities of
finding corresponding ordinal patterns for both initial and
reversed times series. Correspondingly, if both types have
approximately the same probability distributions of their
patterns, time series is presented to be reversible and the
opposite conclusion for the other case.

The difference between distributions of direct time se-
ries (Pd) and reversed (Pr) can be estimated with equation
(15).

From the presented figures it can be seen that as finan-
cial crisis comes, the distance between two distributions

becomes more close to zero, denoting that those period is
less irreversible and efficient. Moreover, in this case we
see that DKL for permutaiton patterns acts as a measure
of complexity. The dynamics before crisis events starts
do decrease, presenting trend to be more predictable, and
after them it increases, demonstrating the increasing com-
plexity.

3 Conclusions

Financial systems does not always evolve with precisely
the same values. Instead, their prices increase or decrease
over time due to different market conditions, political, and
economical situations in concrete countries or in the word.

In this work we have presented how to deal with (sta-
tistical) time irreversibility, varying over time. Using the
time series of Dow Jones Industrial Average index and the
sliding window procedure, first of all, we have presented
our classification of crisis events in DJIA index, and we
have constructed econophysical and econometrical indi-
cators of financial crashes and critical events. Our study
affirms ranging degrees of irreversibility in DJIA stock in-
dex. Some of its periods of existence are presented to be
more irreversible comparing to others. Namely, periods of
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financial stress are characterized by higher irreversibility
and, thus, by increasing predictability and less efficiency.
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