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Abstract. In this paper, at the first time, the analysis of correlational
and non-extensive properties of the CO2 emission market relying on the
carbon emissions futures time series for the period 04.07.2008–10.05.2021
is performed, and the daily data of the power sector from the U.S. Carbon
Monitor for the period 01.01.2019–10.05.2021, which consist the data of
both individual countries (USA, Germany, China, India, United King-
dom, et al.) and global emissions (World) are investigated using such
approach. To demonstrate the applicability of these methods on systems
of another nature and complexity, the analysis of the Dow Jones Indus-
trial Average (DJIA) index is presented. The results show that both
futures and the DJIA are presented to be non-extensive, and the distri-
bution of their normalized returns can be better described by power-law
probability distributions, particularly, by q-Gaussian. Tsallis triplet for
the entire time series of CO2 emissions futures and the DJIA is esti-
mated, and q-triplet as an indicator of crisis phenomena is presented,
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relying on the sliding window algorithm. It can be seen that the triplet
behaves characteristically during economic crises. This study shows that
the toolkit of the random matrix theory (RMT) allows to investigate the
correlational nature of the carbon emissions market and to build appro-
priate indicators of crisis phenomena, which clearly reflect the collective
dynamics of the entire research base during events of this kind.

Keywords: Carbon emissions · Tsallis triplet · Random matrix
theory · Correlations · Non-extensivity

1 Introduction

Global climate change and carbon pricing are increasingly popular topics. The
ecological security of the earth and the long-term forecasting and tracking of the
carbon markets development have become a new challenge facing all countries
that are interested in environmental development. It also should be noted that
climate change is such a challenge that must be considered not only by the local
groups but with coordination at the international level. According to the 2015
Paris Climate Agreement [32], nowadays low-carbon economy has been supported
through regulation of emission trading schemes, taxes, and fossil fuel extraction
fees.

Carbon pricing is such an indicator for countries and companies that forces
them to switch to more efficient processes or cleaner fuels. For governments, it
is a guiding mechanism for dealing with carbon dioxide emissions. More support
and awareness around carbon pricing leads to significant costs for companies,
amounting to as much as $1.3 trillion from the 2030 year year across companies
in the S&P 500.

On the other hand, it forces market mechanisms to produce financial incen-
tives to lower emissions by switching to more energy-saving and emission reduc-
tion technologies [3]. In the emerging class of energy and carbon hedge funds,
policymakers, risk managers, and emission intensive firms need to track the effi-
ciency of the carbon market [10].

Carbon markets are presented to be similar to other financial markets, such as
securities and foreign exchange markets. At the same time, such carbon market as
China‘s, except common influence factors of the traditional markets, is influenced
by fossil energy price, quota allocation system, and extreme weather change [37].

Thus, it seems that the carbon market is a complex and self-organized system,
consisting of a plurality of interacting agents possessing the ability to generate
new qualities at the level of macroscopic collective behavior. Its dynamics can
be tracked and forecasted, in most cases, from the complex network of market
agents or as an integrated output signal – a time series of carbon prices.

For carbon pricing, it is important to have the risk identification and fore-
casting system to have the opportunity for implementation responsive laws and
innovative approaches in advance for sustainable economical development. Pri-
gogine‘s manifestations of the system complexity [19] is an idea by which we
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will be guided during studying the carbon market and appropriate quantitative
measures of complexity. The key idea here is the hypothesis that the complexity
of the system before the crashes and the actual periods of crashes must change.
This should signal the corresponding degree of complexity if they are able to
quantify certain patterns of a complex system.

Previously, some of such quantitative measures of complexity for cryptocur-
rencies, stock, and sustainability indices [2,24–29] were studied. In this paper,
in order to have the possibility to study trading opportunities, the prospects for
investing in a market, particularly, to study various components that define the
nature of carbon prices and the collective behavior of the whole carbon market
which is of particular value for politicians of specific countries, such informa-
tive measures of complexity as Tsallis statistics and Random matrix theory are
presented.

Further, the daily prices of carbon regarding carbon emissions futures time
series (Investing.com) for the period 04.07.2008-10.05.2021 are analyzed. More-
over, the dynamics of emissions is depended on the economical situation of a
specific country and the whole world. In order to present the validity of the pre-
sented methods, for comparison, the Dow Jones Industrial Average (DJIA) index
is selected as the most quoted financial barometer that has become synonymous
with the financial market in general. The DJIA data were obtained for the same
period (Yahoo! Finance).

Figure 1a clearly shows the correlations of the time series, especially in peri-
ods of crisis.

Fig. 1. Comparative dynamics of CO2 and the DJIA daily values (a). Standardized
returns of CO2 and the DJIA (b).

However, in Fig. 1b, these correlations are no longer obvious for standardized
returns. Such a feature of the behavior of standardized returns causes the specific
dynamics of the complexity measures under consideration, which are calculated
based on the returns data or their modules. CO2 returns in turn are calculated

https://www.investing.com/commodities/carbon-emissions
https://finance.yahoo.com/quote/%255EDJI?p=%255EDJI
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as G(t) = lnx(t+Δt)−ln x(t) ∼= [x(t+Δt)−x(t)]/x(t), and standardized returns
can be defined as g(t) ∼= [G(t) − 〈G〉]/σ, where σ ≡ √〈G2〉 − 〈G〉2 – standard
deviation of G, Δt is a time lag (in our case Δt = 1), and 〈. . . 〉 – the mean value
of the time period under study.

As a database for the study of correlation processes in the carbon diox-
ide emission markets, we used the daily data of the power sector from the
U.S. Carbon Monitor for the period 01.01.2019-10.05.2021. It contains data of
the most active emitters of carbon dioxide, including both individual coun-
tries (USA, Germany, China, India, United Kingdom, etc.) and global emissions
(World).

Finally, to study the dynamics of emissions and stock indices and indicators,
the sliding window procedure is used. All the procedures below will be carried
out within a subset of the length wwin, after which the window is shifted by the
predefined time step hwin, and the corresponding algorithms are repeated until
the entire series is completely exhausted.

All indicators were calculated using author’s software and libraries based on
Matlab programming language [17].

Therefore, our paper is structured as follows. Section 2 emphasizes studies
that have been dedicated to this market and different methods of complexity
applied to it. Section 3 describes the main instrument for studying non-extensive
nature of the carbon market. Section 4 provides the idea of Random matrix
theory. Section 5 is the conclusion of this paper.

2 Literature Review

In recent years global warming and its influence factors have attracted
widespread attention. In the paper [14], authors emphasize that numerous num-
ber of papers were devoted to household CO2 emissions. Such research is pre-
sented to be interdisciplinary and, according to the author‘s study, have to con-
sider overall cognition of the environment, the economy, society, and technology.

As an example of interdisciplinary methods, Li et al. [12] study the global
carbon transfer evolution in terms of complex networks. They use the MRIOA
model to measure the heterogeneous carbon flow connections, detect regional
cluster structures and identify each economy’s coreness value in the context
of the core-periphery model. Their empirical results can give new insights on
global carbon flow patterns, give reliable footprint indicators and consumption-
based models for policymakers. Jiang et al. [5] imply complex network, panel
regression, and multi-regional input-output analyses to determine the influence
of different countries in the global carbon emissions embodied in trade transfer
networks on their direct carbon emissions. Results present that countries’ role
in the embodied carbon emission transfers changed over time. Such an approach
gives the possibility to look at the factors by which direct carbon emissions are
ruled and the dependence of direct emissions from embodied.

https://carbonmonitor.org/
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Wang et al. [34] investigate cross-correlation between energy and emission
markets from the perspective of multifractal analysis. Using the detrended cross-
correlation analysis and its multifractal extension, they examine power-law cross-
correlations and find three returns of oil, gas, and CO2 are fat-tailed and obey
“inverse cubic power-law”. Generally, the nonlinear and multifractal behavior
are peculiarities of individual and cross-correlated emission and energy markets.
Applying the sliding window approach, they show dynamically how changes
their multifractal nature during different periods. Zou and Zhang [37] have done
a similar study on the time series of domestic energy and carbon markets in
China. They have found that these markets are correlated and present multi-
fractal characteristics: long-term memory and fat-tailed probability distribution
of their returns. Depending on economical and political situations, their relation-
ship shows different trends, multifractal characteristics, and correlations change.
Analyzing high-frequency time series of air measurements, Karatasou and San-
tamouris [8] applied power spectral density analysis over time scales and found
that air temperature data exhibit turbulent-like intermittent properties with
multifractal statistics. Multifractal nature has not spared the soil CO2 emissions
and selected soil attributes: soil water content, temperature, clay content, macro
and microporosity, air-free porosity, magnetic susceptibility, bulk density, humi-
fication index of soil organic matter, and relative to organic carbon content [20].
EU carbon market also demonstrates multifractality [13].

Techniques from recurrence analysis [16,36] are another solution to how to
interact with the complexity of the system and, particularly, with recurrence
dynamics. Kisel’ák et al. [9] analyze methane and carbon dioxide emissions
using recurrence plots. Both CO2 and CH4 presents deterministic, stochastic,
and chaotic periods from recurrence plots and quantitative measures of recur-
rence quantification analysis. Sparavigna [30] presents recurrence plots to study
the dynamics of CO2 concentration and emissions in metric tons per capita of
US, China, Italy, UK, Japan, and Canada. Different interesting patterns in recur-
rence plots were explored and found similarities in trends of several countries.

Information entropy and its extensions is another solution for accessing
dynamics of CO2 emissions. Suh [31], using cross-entropy, reveal inequality in the
regional distributions of carbon dioxide emissions in the U.S, namely, between-
region and within-region inequalities. Their entropy-based model demonstrates
that these inequalities vary across the regions. Alptekin et al. [1] refers to 28
EU countries and Turkey and nine low carbon development indicators. Using
information entropy method, authors weights of importance in grey relational
analysis. Also, they find how the importance of each indicator changes for dif-
ferent years.

In the following sections, non-extensive statistics and random matrix theory
will be presented.
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3 Non-extensive Statistics and Tsallis Triplet

Non-extensive statistical theory mathematically basing on non-linear equation

dy

dx
= yq, (y(0) = 1, q ∈ �)

and generalized definition of entropy

Sq = −k
1 − ∑

i pq
i

1 − q
,

which is defined, regarding the q-exponential function

eq(x) =

{
(1 + (1 − q)x)

1
1−q , if 1 + (1 − q)x > 0

0, if 1 + (1 − q)x < 0

and q-logarithm

lnq(x) =
x1−q − 1

1 − q
.

While the Tsallis entropy Sq measures the complexity, the power-law exponent
q characterizes the degree of correlations (non-extensivity) of the system.

Considering two probabilistically independent systems A and B, their prop-
erty of non-additivity can be expressed as

Sq(A + B) = Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B).

The first part of the equation is additive while the second is multiplicative,
describing the long-range interactions between the two systems.

For q → 1, non-extensive statistics reduces to usual Boltzmann-Gibbs (BG)
statistics (equilibrium state), which consider systems with short-range correla-
tions inside their immediate neighborhood and close to a Gaussian state. But
the real-world (non-extensive) systems such as stock or emissions futures are
presented to be far from a simple Gaussian state. Figures 2a and 2b demon-
strate that studied signals are far away from additivity, their q-exponents > 1,
and they are characterized by fat-tails that can be better described in terms of
non-extensive statistics, particularly, by q-Gaussian distribution.

For a non-extensive system, the value of the index depends on the esti-
mated properties of the dynamics and phase space of the system. For dynam-
ical systems that follow non-extensive statistics, a q-triplet is evaluated. These
indices can describe such features as q-exponential sensitivity to initial condi-
tions (weak chaos, described by growth with a parameter qsens), q-exponential
relaxation of macroscopic quantities towards equilibrium (exponential decay
with a relaxation parameter qrel), and q-exponential distribution describing a
metastable or quasi-stationary state which can be described with a parameter
qstat. (qstat, qsens, qrel) 	= (1, 1, 1) have to satisfy the condition qsens ≤ 1 ≤
qstat ≤ qrel.
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Fig. 2. Comparison of empirical distributions for CO2 (a) and DJIA (b) time series with
Gaussian and q-Gaussian distribution. In addition, the parameter of non-extensivity is
defined for both cases.

Table 1. Characteristic exponents for the entire time series of CO2 and the DJIA.

Index qstat qrel qsens

CO2 2.25 1.88 0.23
DJIA 1.60 2.40 −0.29

Table below presents the values of qstat, qrel, and qsens for the entire data of
dioxide futures and the DJIA index. We can see that both time series have to
be described in terms of non-extensive statistics (Table 1).

But, since the complexity of the system will naturally change, as was men-
tioned in the introduction, further calculations will be performed within the
framework of the sliding window.

The calculations were carried out taking into account various window lengths
wwin and time steps hwin. If hwin is small, there are too few values for construct-
ing the indicators. In the other case, if the window is too big, then the differenti-
ation of all crises seems problematic. In a large range, we can cover several crises
simultaneously, the dynamics of which will affect the accuracy of the indicators.
Also, with a large time step, it is possible to skip the period, which may seem
to be the cornerstone in identifying a further crisis. According to the results of
modeling, wwin = 250 and hwin = 1 seems to be a reasonable choice.

3.1 Tsallis q-Stationary Parameter

The value of qstat for the stationary state is derived from probability distribution
function (PDF) of returns, which in turn is obtained by fitting q-Gaussian

Pq(β; r) =
√

β

Cq
eq(−βr2),
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where β is a positive number and Cq is a normalization constant, and Cq has
the form:

Cq =

√
π Γ( 3−q

2(q−1) )√
q − 1 Γ( 1

1−q )
for 1 < q < 3.

By minimizing the
∑

i[Pq(β; ri) − p(ri)]2, we select β.
Further calculations use a time series of absolute returns obtained from stan-

dardized one, as well as returns change ΔG(t) = |G(t + Δt)| − |G(t)|.
The first value from the triplet, the stationarity index qstat, is calculated

based on the probability distribution of returns change ΔG(t). To obtain the
distribution, the interval [min(ΔG(t)),max(ΔG(t))] is divided into subintervals
hΔG = [max(ΔG) − min(ΔG)]/NΔG, where NΔG is the specified number of
expected intervals.

Next, the number of ΔG(t) values that fall into each subinterval (ri, ri+Δt) =
(ri, ri + hΔG) is counted, which is then divided by the total number of returns
change. As a result, a set of paired values ri+1/2, p(ri+1/2) is formed, where
p(ri+1/2) is an element of the probability distribution obtained for ri+1/2 that is
the middle of the corresponding interval.

Then, the index qstat is found from the best linear adjustment in a
lnq[p(ri+1/2)] vs. r2i+1/2 graph, varying the index q between 0.5 and 7.0 with
the step hstat (preferably, hstat = 0.01 or, to speed up the calculation procedure,
hstat = 0.1).

Figure 3 demonstrates comparative qstat dynamics for carbon emissions and
the DJIA.

Fig. 3. Comparative dynamics of qstat with carbon emissions futures prices (a) and
the DJIA (b).
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3.2 Tsallis q-Relaxation Parameter

The corresponding q-value for the relaxation process is obtained from the auto-
correlation coefficient

A(τ) =
∑

t |gt+τ | · |gt|∑
t |gt|2 .

For BG statistics, this correlation should decrease exponentially. However, the
autocorrelation of financial time series for absolute values of returns (volatility)
always decreases much more slowly. In addition, as the time series is presented
to be non-stationary, the correlation coefficient should change over time. Thus,
the corresponding qrel index should also change over time. Similarly to previous
approach, the value of qrel can be estimated by best t on lnq A(τ) vs. scale τ .

Figure 4 demonstrates comparative qrel dynamics for carbon and the DJIA.

Fig. 4. Comparative dynamics of qrel with carbon emissions futures prices (a) and the
DJIA (b).

3.3 Tsallis q-Sensitivity to Initial Conditions

Systems with weak chaos (power law sensitivity to initial conditions) are better
described by the non-extensive statistics. Deviations of the neighboring trajec-
tories of the attractor lead to multifractal structure of the studied system [21].
Initially, it was hypothesized, and later proved for time series of non-intensive
systems of different nature, that a relation occurs [15]:

1
1 − qsens

=
1

αmin
− 1

αmax
,

where αmin and αmax are the extreme values of the multifractal spectrum f(α)
for which f(α) = 0, and α is the local scaling exponent (the singularity strength
or Hölder exponent) [7]. f(α) denotes the fractal dimension of the local attrac-
tor’s subset and can be calculated using the Multifractal Detrended Fluctuation
Analysis (MF-DFA) method [7].

Figure 5 illustrates comparative qsens dynamics for carbon and the DJIA.
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Fig. 5. Comparative dynamics of qsens with carbon emissions futures prices (a) and
the DJIA (b).

4 Random Matrix Theory

Determining correlations between different stocks is a topic that is interesting
not only from the scientific reasons for understanding the economy as a complex
dynamic system but also from a practical point of view, in particular, from the
point of view of asset allocation and portfolio risk assessment. We will analyze
mutual correlations between stocks using the concepts and methods of random
matrix theory used in the context of complex quantum systems, where the exact
nature of interactions between subunits is unknown.

RMT [4,18,35] is a popular technical tool for investigating the cross-
correlation in financial [11,22,23,33] and energy markets [6]. The random matrix
theory mainly studies some statistical properties of the eigenvalues and eigen-
vectors of the random matrix.

To quantify correlations, first of all, we define standardized returns of the ith

emissions at time t. Then the calculation of the cross-correlation matrix C is
reduced to the calculation of the formula Cij ≡ 〈gi(t)gj(t)〉.

By construction, the elements Cij are restricted in the domain −1 ≤ Cij ≤ 1,
where Cij = 1 corresponds to perfect correlations, Cij = −1 corresponds to
perfect anti-correlations, and Cij = 0 corresponds to uncorrelated pairs of energy
prices.

Difficulties appear as the analyzed pair of energy commodities is presented
to be non-stationary, and the shorter the length, the less accurate mutual cor-
relations between series. It is thus important to devise methods that allow one
to distinguish “signal” from “noise”, i.e. eigenvectors and eigenvalues of the cor-
relation matrix containing real information (which one would like to include for
risk control), from those which are devoid of any useful information, and, as
such, unstable in time. From this point of view, it is interesting to compare the
properties of an empirical correlation matrix C to a “null hypothesis” purely ran-
dom matrix as one could obtain from a finite time series of strictly independent
assets. If the properties of C correspond to the properties of a random matrix,
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then we can say that the empirically measured correlations are random. In con-
trast, the deviations from the random matrix case might suggest the presence of
true correlations (“information”).

4.1 The Distribution of Eigenvalues

For getting the mutual information between assets, formula for the cross-
correlation matrix can be symbolically rewritten as C = 1

LGGᵀ, where G is
the matrix of size N × L with elements {gim = gi(mΔt); i = 1, . . . , N ; m =
0, . . . , L − 1} and ᵀ denotes matrix transportation. Let‘s consider random (shuf-
fled) correlation matrix R = 1

LAAᵀ, where A is N × L rectangular matrix that
consists N time series with L random values aim, mean 0 and variance σ2 = 1.

For standardized logarithmic returns of the ith emissions, pairwise cross-
correlation coefficients between any two returns time series are calculated. Fur-
ther estimations will also consider sliding window procedure, where correspond-
ing wwin = 50 and hwin = 1. Graphical representation of correlation coefficients
between CO2 emissions of different countries is presented in Fig. 6.

Fig. 6. Heatmaps of the initial (a) and shuffled (b) correlation matrices.

From Fig. 7b it can be seen that the distribution of the paired correlation
coefficients of the initial database differs significantly from the distribution func-
tion described by the RMT. It is noticeable that CO2 emissions of different
countries appear to be significantly correlated and self-organized systems.

The statistical properties of random matrix R are known. Particularly, as
N,L → ∞, such that Q ≡ L

N (≥ 1) is fixed, the probability density function Prm

of eigenvalues of the random correlation matrix is given by

Prm(λ) =
Q

2πσ2

√
(λmax − λ)(λ − λmin)

λ

with λ ∈ [λmin, λmax] , where λmin and λmax are the largest and the smallest
eigenvalues of R and, correspondingly, λmax

min = σ2(1 + 1/Q ± 2
√

1/Q).
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Fig. 7. The dynamics of pairwise correlation coefficient of countries included to
database with the sliding window technique (a). The windowed distributions of pair-
wise correlation coefficients for initial (purple) and shuffled (red) matrices (b). (Color
figure online)

In further, the distribution of eigenvalues P (λ) = 1
N

dn(λ)
dλ of C with Prm(λ)

will be compared. Now, in Fig. 8 the spectrum of eigenvalues and the averaged
correlation coefficient in the framework of the moving window approach is pre-
sented.

Fig. 8. Window dynamics of the eigenvalue spectrum of the initial correlation matrix
(a). The exact time series of global emissions and the averaged correlation coefficient
(b).

A comparison of the dynamics of the λmax (Fig. 8a) and the correlation
coefficient (Fig. 8b) shows their practical identity. The arrow “Covid” indicates
the beginning of the crisis associated with the coronavirus pandemic. The crisis
leads to a decrease in CO2 emissions and, accordingly, the degree of correlation
of the market under study. Figure 8a shows that the maximum eigenvalue is the
most informative indicator, and it also changes over time.
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Modes of the market can be reflected in eigenvalue and eigenvector pairs of
the empirical correlation matrix C. Eigenvectors correspond to the participation
ratio (PR) and its inverse participation ratio (IPR)

Ik =
N∑

l=1

[uk
l ]4,

where uk
l , l = 1, . . . , N are the components of the eigenvector uk. So PR indi-

cates the number of eigenvector components that contribute significantly to that
eigenvector. More specifically, a low IPR indicates that all assets move in a sim-
ilar fashion, responding to the overall trend of the market. In contrast, a large
IPR would imply that the factor is driven by the dynamics of a small number
of assets. The irregularity of the influence of the eigenvalues of the correlation
matrix is determined by the absorption ratio (AR)

ARn =
∑n

k=1 λk
∑N

k=1 λk

,

which is a cumulative risk measure which measures the fraction of the overall
variance in returns explained (absorbed) by a subset of eigenvalues.

Figures 9a and 9b present how differ P (λ) and IPR from predictions of RMT.

Fig. 9. The distribution of IPR (a). The eigenvalue spectrum distribution function (b).
The results obtained for the random matrix are highlighted in red. (Color figure online)

Next, IPR, λmax, and AR are calculated using sliding window approach and
presented in Fig. 10.
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Fig. 10. The dynamics of global CO2 emissions along with PR, λmax, and AR.

5 Conclusions

In this paper, the correlational and non-extensive properties of the CO2 emission
market are analyzed for the first time on the example of futures and the U.S.
Global Carbon Monitor data. It is shown that the distribution of normalized
returns for the dioxide futures obeys the Tsallis statistics (q > 1). As an example,
we took the DJIA index to test the applicability of the presented methods for
which q = 1.4926. Tsallis triplet is also calculated for CO2 and DJIA. Obviously,
the changing dynamics of the initial time series should lead to varying values of
the triplet. It is shown that the dynamics of the values of q-triplet change in a
characteristic way during economic crises. Although this dynamics is different
for carbon emissions and the DJIA, it captures the changing trends in both
markets. As expected, the carbon market is strongly correlated and its properties
calculated by the RMT method allowed us to identify a number of characteristic
measures (λmax, absorption ratio, etc.), which are indicators of crisis phenomena
in this market.

A significant advantage of the introduced measures is their dynamism, i.e.,
the ability to monitor the change in time of the chosen measure and compare it
with the corresponding dynamics of the output time series. This allowed us to
compare the critical changes in the dynamics of the system, which is described
by the time series, with the characteristic changes of concrete measures of com-
plexity. It turned out that quantitative measures of complexity respond to crit-
ical changes in the dynamics of a complex system, which makes them valu-
able in the diagnostic process and prediction of future changes. Such econo-
physics approaches give rewarding perspectives for ordinary investors, profes-
sional traders, and data analysts who track the state of the investment object
(trades) and try to predict a further trend.

Discovered differences between CO2 emissions futures and the DJIA index,
which are also evident in the analyzed complexity measures, in our opinion,
are related to the peculiarities of carbon futures. The study of these features



Correlational and Non-extensive Natureof Carbon Dioxide Pricing Market 197

encourages us to apply a wider range of methods from the theory of complex
systems: fractal, recurrent, quantum, and other measures, which is planned to
be done in our subsequent studies.
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