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Abstract
Relevance. In this study, considerable attention is devoted to the analysis of dynamic loads that occur in the rope 
systems of lifting mechanisms of overhead cranes during start-up and braking, and the reduction of these loads.
Purpose. To identify the magnitude and nature of changes in dynamic loads in the elements of lifting mechanisms 
of bridge cranes, a comprehensive dynamic analysis of the lifting mechanism of the bridge crane and its elastic 
elements (rope systems) was performed.
Methods. The dynamic analysis of the above mechanisms and systems was performed on well-grounded 
mathematical models of bridge-type cranes (single- and double-mass). 
Results. The analysis of the obtained calculations of mathematical models of the mechanism of lifting the load 
of bridge cranes demonstrated that the dynamic loads applied to the structural elements and drive mechanisms 
are oscillatory and comparable to static loads. The analysis of the obtained calculations of mathematical models of 
the mechanism of lifting the load of bridge cranes demonstrated that the dynamic loads applied to the structural 
elements and drive mechanisms are oscillatory and comparable to static loads. To minimise the integral functionals, 
the methods of classical calculus of variations, mathematical physics and differential equations were used to 
model the dynamics of loading processes of rope systems and drives of bridge cranes, and the terminal (initial and 
final conditions of movement of such systems) were considered, which allowed solving the optimisation problem 
unambiguouslyThus, to reduce dynamic loads in structural elements (in particular, in ropes) during transients in 
such lifting mechanisms of bridge cranes, it is proposed to perform optimisation of the modes of movement of their 
drive mechanisms. An essential place in such optimisation is occupied by the choice of the optimisation criterion. 
Among such criteria, integral optimisation criteria were used. As such integral optimisation criteria, the RMS values 
of the current loads in the elastic elements (ropes) of overhead travelling cranes have been used.
Conclusions. Such integral criteria are integral functionalities that usually reflect undesirable properties of 
machines and their mechanisms, thus, they are subject to minimisation.
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Introduction
Lifting and transporting machines belong to machines 
with increased danger during lifting, transporting and 
installation works. The safe operation of these ma-
chines largely determines the magnitude and nature 
of the change in time of the acting loads on the struc-
tural elements and drive mechanisms. Particularly 
dangerous for the operation of lifting and transport 
machines are dynamic loads that change in time and 
can result in complex oscillatory processes in structural 
elements. Such fluctuations significantly affect the sta-
bility of the lifting machines and result in fatigue fail-
ure of their elements. All this affects the operational 
reliability of both lifting and transporting machines. 
The reliability of lifting and transport machines can be 
significantly improved by reducing dynamic loads on 
their structures and drive mechanisms. Particularly dan-
gerous for lifting and transport machines are dynamic 
loads that occur during transient processes of move-
ment, in particular, starting and deceleration of drive 
mechanisms. Thus, for example, a slight decrease in 
dynamic loads during start-up of up to 30% and de-
celeration of up to 40% of the mechanisms of portal 
cranes allowed increasing the overhaul cycle of these 
cranes from 2 to 5 times. Thus, in this study, consid-
erable attention is devoted to the analysis of dynamic 
loads that occur in the rope systems of lifting mech-
anisms of overhead cranes during start-up and brak-
ing, and the reduction of these loads. To identify the 
magnitude and nature of changes in dynamic loads in 
the elements of lifting mechanisms of bridge cranes, a 
comprehensive dynamic analysis of the lifting mecha-
nism of the bridge crane and its elastic elements (rope 
systems) was performed. The dynamic analysis of the 
above mechanisms and systems was performed on 
well-grounded mathematical models of bridge-type 
cranes (single- and double-mass).

The analysis of the obtained calculations of 
mathematical models of the mechanism of lifting 
the load of bridge cranes demonstrated that the dy-
namic loads applied to the structural elements and 
drive mechanisms are oscillatory and comparable to 
static loads. Thus, to reduce dynamic loads in struc-
tural elements (in particular, in ropes) during tran-
sients in such lifting mechanisms of bridge cranes, it 
is proposed to perform optimisation of the modes of 
movement of their drive mechanisms. An essential 
place in such optimisation is occupied by the choice 
of the optimisation criterion. Among such criteria, pri-
marily, integral optimisation criteria were used. In the 
majority of cases, as such integral optimisation crite-
ria, the RMS  values of the current loads in the elastic 
elements (ropes) of overhead travelling cranes have 
been used. Such integral criteria are integral function-
alities that usually reflect undesirable properties of 
machines and their mechanisms, thus, they are sub-
ject to minimisation. To minimise the integral func-
tionals, the  methods of classical calculus of  variations, 

 mathematical physics and differential equations were 
used to model the dynamics of loading processes of 
rope systems and drives of bridge cranes, and the 
terminal (initial and final conditions of movement of 
such systems) were considered, which allowed solving 
the optimisation problem unambiguously. As a result 
of the performed optimisation of the modes of move-
ment of the drive mechanisms of lifting bridge cranes 
in the areas of transitional processes, the dynamic 
loads of the rope systems of bridge cranes are signifi-
cantly reduced, the smoothness of the movement of 
the main elements of such mechanisms is achieved and 
oscillatory processes are practically eliminated.

The predecessor scientists conducted a com-
prehensive analysis of dynamic loads in the structural 
elements of overhead cranes during their start-up and 
deceleration [1-3]. However, such an analysis has sig-
nificant disadvantages, since the driving forces that 
result in the necessary movement of the lifting mech-
anisms of bridge cranes were not established, and the 
problem was reduced to the analysis and synthesis of 
the modes of movement of mechanisms in the presence 
of specific kinematic terminal conditions [4]. This, in 
turn, has resulted in inaccuracies and  frankly vast for-
mulas that describe the optimal modes of movement 
(of ropes with loads) in such mechanisms, which has 
no practical use, since it does not evaluate the usual 
engineering indicators of movement in such systems 
(for example, dynamism coefficients). To eliminate 
such disadvantages, this study was performed, which 
allowed determining the coefficients of dynamism in 
the transient modes of functioning of lifting mecha-
nisms and rope systems of overhead travelling cranes 
for typical methods of lifting loads: “from weight” and 
“with pickup”/”from the base” [5].

The purpose of the research is to substantiate 
the modes of starting the lifting mechanisms of over-
head travelling cranes, which minimise dynamic loads 
in rope systems in different ways of lifting the load: 
“from the weight”, “with pickup”/”from the base”.

Materials and Methods
In the work, the dynamic load on the load-gripping de-
vices was evaluated in two variants – lifting the load: 
“from weight” and “with pickup”/”from the base”. In 
the first variant, it is assumed that the load is at a 
specific (small) height above the base, and the static 
load acting on the load gripping devices is equal to the 
weight of the load Ql. Dynamic load Pdyn occurs at the 
initial moment of deceleration of the descending load 
when the brakes are applied [4-6].

In the second variant of loading, it is assumed 
that the load is on any base, the ropes are sagging, 
and, accordingly, at this moment, the load on the 
load-catching devices is zero.

In determining the dynamic load, the masses, 
mr and ml are attributed to the periphery of the drum, 
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and the mass ml is determined proportionally to the 
square of the ratio of the number of branches of the 
cargo chain hoist, which are wound (or winding) on 
the drum, to the total number of branches on which 
the load hangs [1].

When determining the starting modes of the 
lifting mechanisms of overhead cranes, the results 
of the following indicators were considered: exces-
sive driving force, rope speed and rigidity of the sup-
porting structure, mass of the engine rotor and load, 

 kinetic and potential excessive force, system stiffness 
and time, load dynamics, oscillation frequency, condi-
tions and mode of movement, etc. When assessing the 
dynamic load on load-gripping devices, the following 
should be considered: under conditions of proper op-
eration, mainly only the vertical dynamic load during 
the operation of the load-lifting mechanism is signifi-
cant, since, during the operation of the crane movement 
mechanisms and the rotation of its slewing part, it does 
not exceed 5-6% of the static load (Fig. 1) [1; 2].

Figure 1. Scheme of dynamic loading of a loading device when lifting a load “from weight”
Note: a) on an overhead crane; b) design scheme
Source: [1; 2]

There are two options for lifting the load: “from 
weight” and “with pickup”/”from the base” [4-6]. In 
both cases, the dynamic coefficient (Кd) is determined 
by the dependence:

К𝑑𝑑𝑑𝑑 = 1 + Р𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑/𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙  , (1)

where: Рdyn – in the first case is a function of the excess 
driving force and the stiffness of the supporting struc-
ture and in the second case is a function of the rope 
speed and the stiffness of the supporting structure.

Results
When designing in the case of lifting a load: “from 
weight” the crane is modelled by a two-mass oscil-
lating system [7-9]. In this system, the stiffness of the 
ropes and the crane CK structure are replaced by the re-
duced stiffness Cp, and the system itself consists of two 
masses – mr (mass of the rotor of the engine and the re-
duced masses of the elements of the lifting mechanism) 
and ml (mass of the load), connected by stiffness С:

𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝 = С𝐾𝐾𝐾𝐾
(С+С𝐾𝐾𝐾𝐾)

  . (2)

When moving xr mass mr and xl mass ml, the kinetic 
and potential energy are respectively:

�
𝐾𝐾𝐾𝐾 = 𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟

2
⋅ (�̇�𝑥𝑥𝑥𝑟𝑟𝑟𝑟)2 + 𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙

2
⋅ (�̇�𝑥𝑥𝑥𝑙𝑙𝑙𝑙)2;

𝑃𝑃𝑃𝑃 = С ⋅ {(𝑥𝑥𝑥𝑥𝑟𝑟𝑟𝑟 − 𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙)2/2}
   (3)

For the mass, mr the driving force is the weight 
of the cargo Ql (Ql = ml⋅g,g – acceleration of free fall, 
g=9.81 m/s2), and the excessive force of the engine Тexc; 
for the mass ml – weight of the cargo Ql, acting in the 
same way as the inertial force of the cargo during lifting.

In cranes with the drive of the load-lifting mech-
anism from a three-phase current motor, the excess 
force Тexc can be considered constant (with other laws 
of change of the driving force, and, accordingly, the 
excess force, the dynamism of the lifting process will 
be less) [1]. The equations of motion have the type:

�
𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟 ⋅ �̈�𝑥𝑥𝑥𝑟𝑟𝑟𝑟 + 𝐶𝐶𝐶𝐶 ⋅ (𝑥𝑥𝑥𝑥𝑟𝑟𝑟𝑟 − 𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙) = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙 + Т𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒;
𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙 ⋅ �̈�𝑥𝑥𝑥𝑙𝑙𝑙𝑙 − С ⋅ (𝑥𝑥𝑥𝑥𝑟𝑟𝑟𝑟 − 𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙) = −𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙 ,

   (4)

where: (xr–xl) – can be denoted by ξ. Then:

𝜉𝜉𝜉𝜉̇ = (�̇�𝑥𝑥𝑥𝑟𝑟𝑟𝑟 − �̇�𝑥𝑥𝑥𝑙𝑙𝑙𝑙); 𝜉𝜉𝜉𝜉̈ = (�̈�𝑥𝑥𝑥𝑟𝑟𝑟𝑟 − �̈�𝑥𝑥𝑥𝑙𝑙𝑙𝑙)  . (5)

In the new notation (ξ) and (5) instead of (4) 
have:

 

�𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟 ⋅ �̈�𝑥𝑥𝑥𝑟𝑟𝑟𝑟 + 𝐶𝐶𝐶𝐶 ⋅ 𝜉𝜉𝜉𝜉 = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙 + Т𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒;
𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙 ⋅ �̈�𝑥𝑥𝑥𝑙𝑙𝑙𝑙 − С ⋅ 𝜉𝜉𝜉𝜉 = −𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙 .

⇔�
�̈�𝑥𝑥𝑥𝑟𝑟𝑟𝑟 + 𝐶𝐶𝐶𝐶

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
⋅ 𝜉𝜉𝜉𝜉 = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
;

�̈�𝑥𝑥𝑥𝑙𝑙𝑙𝑙 −
С
𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
⋅ 𝜉𝜉𝜉𝜉 = −𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙/𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙

.  (6)

mlml
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After subtracting from the first equation of sys-
tem (6) the second equation of the same system ob-
tained an inhomogeneous differential equation for ξ:

�̈�𝜉𝜉𝜉 + 𝛺𝛺𝛺𝛺2 ⋅ 𝜉𝜉𝜉𝜉 = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟

+ 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙

,𝛺𝛺𝛺𝛺2 = С ⋅ � 1
𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟

+ 1
𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
�  . (7)

For the case of lifting the load “from weight” 
use the following initial conditions to solve (7):

𝜉𝜉𝜉𝜉|𝑡𝑡𝑡𝑡=0 = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
С

;  �̇�𝜉𝜉𝜉�
𝑡𝑡𝑡𝑡=0

= 0  . (8)

The general solution of (7) is found in the fol-
lowing type:

𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡) = 𝐴𝐴𝐴𝐴1 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝛺𝛺𝛺𝛺 𝑡𝑡𝑡𝑡 + 𝐴𝐴𝐴𝐴2 ⋅ 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛺𝛺𝛺𝛺 𝑡𝑡𝑡𝑡 + 1
𝛺𝛺𝛺𝛺2
⋅ �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
+ 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
�  . (9)

Considering the conditions (8), from (9) have:

𝐴𝐴𝐴𝐴1 = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
С
− 1

𝛺𝛺𝛺𝛺2
⋅ �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
+ 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
� ;  𝐴𝐴𝐴𝐴2 = 0.   (10)

Then the solution of ξ(t) (9) is given as follows:

𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡) = �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
С
� ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝛺𝛺𝛺𝛺 𝑡𝑡𝑡𝑡 + 1

𝛺𝛺𝛺𝛺2
⋅ �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
+ 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
� ⋅ (1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝛺𝛺𝛺𝛺 𝑡𝑡𝑡𝑡).   (11)

Present (11) in a more convenient form for analysis:

𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡) = �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
С
� ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝛺𝛺𝛺𝛺 𝑡𝑡𝑡𝑡 + 2

𝛺𝛺𝛺𝛺2
⋅ �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
+ 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
� ⋅ 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 �𝛺𝛺𝛺𝛺𝛺𝛺𝛺𝛺

2
�.   (12)

Its value is variable and is a function of system 
stiffness, С and time t. The maximum value of force in 
an elastic link PLCmax occurs at:

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝛺𝛺𝛺𝛺 𝑡𝑡𝑡𝑡 = −1 ⇒ 𝛺𝛺𝛺𝛺𝑡𝑡𝑡𝑡 = (2𝑛𝑛𝑛𝑛 − 1) ⋅ 𝜋𝜋𝜋𝜋,𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁  , (14)

that is, in moments of time:

𝑡𝑡𝑡𝑡 ∗= (2𝑛𝑛𝑛𝑛−1)⋅𝜋𝜋𝜋𝜋
𝛺𝛺𝛺𝛺

,𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁  , (15)

𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙
2⋅𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙

(𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟+𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙)𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝐿𝐿𝐿𝐿𝑒𝑒𝑒𝑒
.   (16)

Since the excess force Тexc=ϕ⋅Ql (where ϕ – is 
the proportionality factor [1]), then:

𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙 �1 + 2𝜙𝜙𝜙𝜙 ⋅ 𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙+𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟

�
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

  , (17)

and the coefficient of dynamism has the form:

К𝑑𝑑𝑑𝑑|𝑡𝑡𝑡𝑡=𝑡𝑡𝑡𝑡∗ = 𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙�
𝐿𝐿𝐿𝐿𝑙𝑙𝑙𝑙

𝐿𝐿𝐿𝐿𝑙𝑙𝑙𝑙+𝐿𝐿𝐿𝐿𝑟𝑟𝑟𝑟
�

2𝐿𝐿𝐿𝐿𝑙𝑙𝑙𝑙
(𝐿𝐿𝐿𝐿𝑙𝑙𝑙𝑙+𝐿𝐿𝐿𝐿𝑟𝑟𝑟𝑟)

Т𝑒𝑒𝑒𝑒𝐿𝐿𝐿𝐿𝑒𝑒𝑒𝑒
𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

  , (18)

where: the last expression for the coefficient (Kd) 
characterises the dynamic loading of the load-grip-
ping device, provided that the lifting begins when the 
weight of the load affects the ropes Ql [10-12].

To establish the dependence Кd (t) the following 
relation is used:

К𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡) = 1 + 𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
(𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙+𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟)

⋅ Т𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

⋅ (1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝛺𝛺𝛺𝛺 𝑡𝑡𝑡𝑡)  , (19)

or:
К𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡) = 1 + 𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙

(𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙+𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟)
⋅ Т𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

⋅ 2 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 �𝛺𝛺𝛺𝛺𝛺𝛺𝛺𝛺
2
�  . (20)

At 𝛺𝛺𝛺𝛺𝛺𝛺𝛺𝛺
2

= (2𝑛𝑛𝑛𝑛1 − 1) ⋅ �𝜋𝜋𝜋𝜋
2
� ,𝑛𝑛𝑛𝑛1 ∈ 𝑁𝑁𝑁𝑁,   that is, at:

𝑡𝑡𝑡𝑡 ∗∗= (2𝑛𝑛𝑛𝑛1−1)⋅𝜋𝜋𝜋𝜋
𝛺𝛺𝛺𝛺

,𝑛𝑛𝑛𝑛1 ∈ 𝑁𝑁𝑁𝑁  . (21)

Кd (t) assumes the maximum values:

К 2⋅Т𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒⋅𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙⋅(𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟+𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙)𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

  . (22)

When decelerating the descending load Рdyn and the co-
efficient of dynamism Кd are determined by formulas 
(13)-(18), and Кd (t) – by formulas (19)-(22) [ 13-15]. 
Therewith, under the Тexc understand the following 
difference:

Т𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = Т𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙  , (23)

where: Тdec – deceleration force applied to the load.
As the moment generated by the brakes is usu-

ally less than the maximum torque [1; 2] generated 
by the engine, the dynamic force when braking the 
load being lowered does not exceed the dynamic force 
that occurs when lifting the load “from weight”. Define 
further the laws of motion of masses mр and mв, based 
on the equations of the system (4), (6), (7) and the 
law ξ(t) (11), (12) under the following (non-zero) ini-
tial conditions (when lifting the load “from weight”):

𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙|𝑡𝑡𝑡𝑡=0 = 0; �̇�𝑥𝑥𝑥𝑙𝑙𝑙𝑙|𝑡𝑡𝑡𝑡=0 = 0; 𝑥𝑥𝑥𝑥𝑟𝑟𝑟𝑟|𝑡𝑡𝑡𝑡=0 = 𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙|𝑡𝑡𝑡𝑡=0 + 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
С

= 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
С

;  �̇�𝑥𝑥𝑥𝑟𝑟𝑟𝑟| = 0  . (24)

The force in the elastic element (in the elastic 
link), which can be considered as the impact of the 

load on the load-carrying devices:

Р𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = С𝜉𝜉𝜉𝜉 = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝛺𝛺𝛺𝛺 𝑡𝑡𝑡𝑡 + 2𝐿𝐿𝐿𝐿
𝛺𝛺𝛺𝛺2
⋅ �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
+ 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
� ⋅ 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 �𝛺𝛺𝛺𝛺𝛺𝛺𝛺𝛺

2
�.   (13)
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From system (6) for xr have:

�̈�𝑥𝑥𝑥𝑟𝑟𝑟𝑟 + 𝐶𝐶𝐶𝐶
𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
⋅ 𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡) = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
  . (25)

From system (6) for xl have:

�̈�𝑥𝑥𝑥𝑙𝑙𝑙𝑙 + 𝑔𝑔𝑔𝑔 = 𝐶𝐶𝐶𝐶
𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
⋅ 𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡)  . (26)

Equations (25) and (26) must be solved under 
the initial conditions (24). Knowing ξ(t) (11) and in-
tegrating twice for t each of equations (25) and (26), 
obtain [16-18]:

𝑥𝑥𝑥𝑥𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡) = 2𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
2⋅𝑇𝑇𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

С⋅(𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟+𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙)2
⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 �𝛺𝛺𝛺𝛺𝛺𝛺𝛺𝛺

2
� + (𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)

2𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
⋅ 𝑡𝑡𝑡𝑡2 + 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

С
  , (27)

𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡) = −2𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟⋅𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙⋅Т𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
С⋅(𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟+𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙)2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 �𝛺𝛺𝛺𝛺𝛺𝛺𝛺𝛺
2
� + Т𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟+𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙)
⋅ 𝛺𝛺𝛺𝛺

2

2
  . (28)

From (27) and (28) evidently seen that the 
mass ml and the mass mr have oscillations whose fre-
quency is Ω [19]. Define the conditions and modes 
of motion ξ(t), xl (t), xr (t),under which in the period of 
acceleration of the system (before the lifting mecha-
nism acquires a steady speed of lifting/lowering the 
load (V)) there are no oscillatory processes in the 
mass mr, and mass ml. Suppose that the duration of 
the system start-up, during which the steady-state 

mode of lifting the load is established, i.e. the speed of 
movement (during lifting) becomes a constant value 
and is V, equal to τП. Then the motion for which the 
coordinate ξ(t) satisfies the motion quality criterion:

� 1
𝜏𝜏𝜏𝜏П
⋅ ∫ (𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡))2𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝜏𝜏𝜏𝜏𝜏𝜏𝜏𝜏

0 �
1/2

⇒ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  , (29)

and will be the sought mass mr and ml systems. A nec-
essary condition for the implementation of the crite-
rion (29) is the Euler-Poisson equation, which can be 
obtained by replacing the integral expression (29) ξ(t) 
with the expression (according to (7)):

𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡) = 1
𝛺𝛺𝛺𝛺2
⋅ �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
+ 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
− �̈�𝜉𝜉𝜉�  . (30)

then the above (Euler-Poisson) equation for (29), 
(30) becomes as follows:

𝜉𝜉𝜉𝜉(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) = 0  . (31)

Consider the solution of (31) as a spline of the 
third order in t:

𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡) = 𝑎𝑎𝑎𝑎1 + 𝑎𝑎𝑎𝑎2 ⋅ 𝑡𝑡𝑡𝑡1 + 𝑎𝑎𝑎𝑎3 ⋅ 𝑡𝑡𝑡𝑡2 + 𝑎𝑎𝑎𝑎4 ⋅ 𝑡𝑡𝑡𝑡3  . (32)

To find the undefined constants 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑖𝑖𝑖𝑖 = (1.4),   
use the following conditions (terminal):

𝜉𝜉𝜉𝜉|𝑡𝑡𝑡𝑡=0 = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
С

;  �̇�𝜉𝜉𝜉�
𝑡𝑡𝑡𝑡=0

= 0; �̈�𝜉𝜉𝜉�
𝑡𝑡𝑡𝑡=0

= �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟

+ 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
� − 𝛺𝛺𝛺𝛺2 ⋅ 𝜉𝜉𝜉𝜉|𝑡𝑡𝑡𝑡=0 = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
+ 𝑔𝑔𝑔𝑔 ∗  , (33)

where: 𝑔𝑔𝑔𝑔 ∗= 𝑔𝑔𝑔𝑔 − 𝛺𝛺𝛺𝛺2 ⋅ 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
С

.   The last terminal condition 
is of the form:

�̇�𝜉𝜉𝜉�
𝑡𝑡𝑡𝑡=𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝

= 0.   (34)

Differentiating by t the appropriate number of 
times the expression (32) and using the conditions 
(33), (34), obtain:

𝑎𝑎𝑎𝑎1 = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
С

;  𝑎𝑎𝑎𝑎2 = 0;  2𝑎𝑎𝑎𝑎3 = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟

+ 𝑔𝑔𝑔𝑔 ∗;  𝑎𝑎𝑎𝑎4 = −2𝑎𝑎𝑎𝑎3
3𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝

.   (35)

Thus, for the traffic quality criterion (29) or 
(30) to be satisfied, it is necessary that ξ(t) the time 
varies according to the following law:

𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡) = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
С

+ �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟

+ 𝑔𝑔𝑔𝑔 ∗� ⋅ 𝑡𝑡𝑡𝑡
2

2
− �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
+ 𝑔𝑔𝑔𝑔 ∗� ⋅ 𝑡𝑡𝑡𝑡3

3𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝
.   (36)

or:

𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡) = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
С

+ �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟

+ 𝑔𝑔𝑔𝑔 ∗� ⋅ �𝑡𝑡𝑡𝑡
2

2
− 𝑡𝑡𝑡𝑡3

3𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝
�.   (37)

Then РLC takes the form:

Р𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐶𝐶𝐶𝐶 ⋅ 𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡) = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙 + С ⋅ �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟

+ 𝑔𝑔𝑔𝑔 ∗� ⋅ �𝑡𝑡𝑡𝑡
2

2
− 𝑡𝑡𝑡𝑡3

3𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝
�.   (38)

For Кd (t) have:

К𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡) = Р𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡𝑡𝑡)
𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

= 1 + С ⋅ �1+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒/𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟

+ 𝑔𝑔𝑔𝑔∗
𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙⋅𝑔𝑔𝑔𝑔

� ⋅ �𝑡𝑡𝑡𝑡
2

2
− 𝑡𝑡𝑡𝑡3

3𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝
�.   (39)
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The maximum values РLC (t) of (38) and Кd (t)  
(39) are obtained at the end of the transient process 
(start-up) at t = τp:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟

+ 𝑔𝑔𝑔𝑔 ∗� 𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝
2

6 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
  , (40)

К �1+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒/𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟

+ 𝑔𝑔𝑔𝑔∗
𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙⋅𝑔𝑔𝑔𝑔

� 𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝
2

6 𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
  . (41)

Further find the laws of motion xl (t) and xr (t), 
which have masses ml and mr at ξ(t) (36), and satisfy 
the terminal conditions (24):

𝑥𝑥𝑥𝑥𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡) = �− 𝐶𝐶𝐶𝐶
𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
� ⋅ �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

С
⋅ 𝑡𝑡𝑡𝑡

2

2
+ �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
+ 𝑔𝑔𝑔𝑔 ∗� ⋅ �𝑡𝑡𝑡𝑡

4

24
− 𝑡𝑡𝑡𝑡5

60𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝
�� + �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
� ⋅ 𝑡𝑡𝑡𝑡

2

2
+ 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

С
  , (42)

𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡) = � 𝐶𝐶𝐶𝐶
𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
� ⋅ �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

С
⋅ 𝑡𝑡𝑡𝑡

2

2
+ �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
+ 𝑔𝑔𝑔𝑔 ∗� ⋅ �𝑡𝑡𝑡𝑡

4

24
− 𝑡𝑡𝑡𝑡5

60𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝
�� − 𝑔𝑔𝑔𝑔𝑡𝑡𝑡𝑡2

2
.   (43)

Using the dependencies �̇�𝑥𝑥𝑥𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡)   and �̇�𝑥𝑥𝑥𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡)   
and their values at the moment t = τp, namely: 
�̇�𝑥𝑥𝑥𝑟𝑟𝑟𝑟|𝑡𝑡𝑡𝑡=𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝 = �̇�𝑥𝑥𝑥𝑙𝑙𝑙𝑙|𝑡𝑡𝑡𝑡=𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝 = 𝑉𝑉𝑉𝑉,   can be found the value of τП and V:

�− С
𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟

�⋅�
𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
С ⋅𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝+�

𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟

+𝑔𝑔𝑔𝑔∗�⋅�𝜏𝜏𝜏𝜏П
3

12 ��+�
𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
�⋅𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝

� С𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
�⋅�

𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
С ⋅𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝+�

𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟

+𝑔𝑔𝑔𝑔∗�⋅�
𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝3

12 ��−𝑔𝑔𝑔𝑔⋅𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝
= 1  , (44)

Thus, have:

𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝 = �
12⋅�Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
�

𝛺𝛺𝛺𝛺2�
𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+𝑇𝑇𝑇𝑇 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
+𝑔𝑔𝑔𝑔∗�

�
1/2

.   (45)

Knowing from the relation (45) τП it is easy to 
find V as follows (this value must satisfy the provi-
sions, standards that are accepted for crane structures 
and, obviously, not exceed them for specific types of 
crane loads and specific types of work performed by 
them on cargo handling) [20]:

𝑉𝑉𝑉𝑉 = 1
2
⋅ �𝐶𝐶𝐶𝐶 ⋅ � 1

𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
− 1

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
� ⋅ �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

С
⋅ 𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝 + �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
+ 𝑔𝑔𝑔𝑔 ∗� ⋅ �𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝

3

12
�� + �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
− 𝑔𝑔𝑔𝑔� ⋅ 𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝�.   (46)

For the case of lifting the load “from the 
base”/”with pickup”, the following initial conditions 
should be used to solve (7):

𝜉𝜉𝜉𝜉|𝑡𝑡𝑡𝑡=0 = 0; �̇�𝜉𝜉𝜉�
𝑡𝑡𝑡𝑡=0

= 𝑣𝑣𝑣𝑣0  , (47)

where: v0 – initial speed of steady-state movement of 
the system in the process of lifting the load. 

The following considerations v0 can be used 
to determine the value. When the weight of the load 
Ql = ml⋅g is on the base, it deforms the latter and the 

 magnitude of the displacement 𝑥𝑥𝑥𝑥�П   of the base due to 
the force on it Ql is 𝑥𝑥𝑥𝑥�П = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙/𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,   where Сbase – is the 
stiffness coefficient of the base [18; 21]. When the 
load is detached from the base in this method of lift-
ing it with a crane, all the potential energy that the 
load has as a result of interaction with this base and 
its deformation is transferred (due to the presence of 
the law of conservation of energy in mechanics) to the 
kinetic energy of the load movement with the initial 
speed v0. Thus, there is the following correlation:

С𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏⋅𝑥𝑥𝑥𝑥�𝑝𝑝𝑝𝑝
2

2
= 𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙⋅𝑣𝑣𝑣𝑣02

2
⇒ 𝑣𝑣𝑣𝑣0 = �𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙⋅𝑔𝑔𝑔𝑔2

𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
= 𝑔𝑔𝑔𝑔 ⋅ �

𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
С𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

= � 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙⋅𝑔𝑔𝑔𝑔
С𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

.   (48)

The general solution of (7) is again sought in 
the form of (9), but now considering the conditions (47), 
obtained:

𝐴𝐴𝐴𝐴1 = �− 1
𝛺𝛺𝛺𝛺2
� ⋅ �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
+ 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
� ;  𝐴𝐴𝐴𝐴2 = 𝑣𝑣𝑣𝑣0

𝛺𝛺𝛺𝛺
.   (49)

Then the solution of ξ(t) (9) is given as follows:

𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡) = 2
𝛺𝛺𝛺𝛺2
⋅ �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
+ 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
� ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 �𝛺𝛺𝛺𝛺𝛺𝛺𝛺𝛺

2
� + 𝑣𝑣𝑣𝑣0

𝛺𝛺𝛺𝛺
⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛺𝛺𝛺𝛺 𝑡𝑡𝑡𝑡.   (50)

The force in the elastic element/rope, which 
can now be considered as the impact of the load on 
the load-carrying devices, will be:

Р𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐶𝐶𝐶𝐶 ⋅ 𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡) = 2𝐿𝐿𝐿𝐿
𝛺𝛺𝛺𝛺2
�𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
+ 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
� ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 �𝛺𝛺𝛺𝛺𝛺𝛺𝛺𝛺

2
� + 𝐿𝐿𝐿𝐿⋅𝑣𝑣𝑣𝑣0

𝛺𝛺𝛺𝛺
⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛺𝛺𝛺𝛺 𝑡𝑡𝑡𝑡.   (51)

Using the relations of elementary trigonometry, (51) can be represented as follows:

Р𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡𝑡𝑡) = 2𝐿𝐿𝐿𝐿
𝛺𝛺𝛺𝛺
⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝛺𝛺𝛺𝛺𝛺𝛺𝛺𝛺

2
� ⋅ �

�
𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
+
𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
�

𝛺𝛺𝛺𝛺
+ 𝑣𝑣𝑣𝑣0 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 �

𝛺𝛺𝛺𝛺𝛺𝛺𝛺𝛺
2
��.   (52)
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Analysis of the relations (50)-(52) demon-
strates that in this variant of lifting the load (“with 
pickup”) at the time moments t* (15) the value РLCmax 
is even greater than in the case of lifting the load “from 
the weight”, since now:

Р𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿|𝑡𝑡𝑡𝑡=𝑡𝑡𝑡𝑡∗𝑙𝑙𝑙𝑙
2𝐿𝐿𝐿𝐿𝑙𝑙𝑙𝑙

(𝐿𝐿𝐿𝐿𝑟𝑟𝑟𝑟+𝐿𝐿𝐿𝐿𝑙𝑙𝑙𝑙) 𝑒𝑒𝑒𝑒𝐿𝐿𝐿𝐿𝑒𝑒𝑒𝑒
�  . (53)

Considering the arguments given above for (17), 
(18), now have that the dynamism coefficient takes 
the form:

К𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡)|𝑡𝑡𝑡𝑡=𝑡𝑡𝑡𝑡∗ = 2 + 2𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
(𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟+𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙)

⋅ Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

.   (54)

Consequently, when lifting the load “from the 
base”/”with pickup”, the value Кd at specific moments 
of time (t*) acquires even greater values than when 
lifting “from the weight”. Now define the law of mo-
tion ξ(t) that satisfies the quality criterion (29), but 
with the lifting method “from the base”/”with  pickup”. 

Repeating the above algorithm for the method of lift-
ing the load “from the weight” have the following re-
sults. Again ξ(t) search in the form (32), since ξ(t) 
must satisfy (31). But now the initial and final condi-
tions change, i.e. instead of (33) have [22]:

К𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡)|𝑡𝑡𝑡𝑡=𝑡𝑡𝑡𝑡∗ = 2 + 2𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
(𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟+𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙)

⋅ Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

.   (55)

Then for the coefficients of the spline by t func-
tion ξ(t) (32) have:

𝑎𝑎𝑎𝑎1 = 0; 𝑎𝑎𝑎𝑎2 = 𝑣𝑣𝑣𝑣0;  2𝑎𝑎𝑎𝑎3 = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟

+ 𝑔𝑔𝑔𝑔;  𝑎𝑎𝑎𝑎4 = −2𝑎𝑎𝑎𝑎3
3𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝

.   (56)

Thus, for the traffic quality criterion (29) or (30) 
to be satisfied, it is necessary that ξ(t) the following law 
of change over time be satisfied t:

𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡) = 𝑣𝑣𝑣𝑣0 ⋅ 𝑡𝑡𝑡𝑡 + �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟

+ 𝑔𝑔𝑔𝑔� ⋅ �𝑡𝑡𝑡𝑡
2

2
− 𝑡𝑡𝑡𝑡3

3𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝
�.   (57)

Then РLC takes the form:

Р𝐿𝐿𝐿𝐿С(𝑡𝑡𝑡𝑡) = 𝐶𝐶𝐶𝐶 ⋅ 𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡) = 𝐶𝐶𝐶𝐶 ⋅ 𝑣𝑣𝑣𝑣0 ⋅ 𝑡𝑡𝑡𝑡 + 𝐶𝐶𝐶𝐶 ⋅ �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟

+ 𝑔𝑔𝑔𝑔� ⋅ �𝑡𝑡𝑡𝑡
2

2
− 𝑡𝑡𝑡𝑡3

3𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝
�.   (58)

For Кd (t) have:

К𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡) = Р𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡
= 𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡+Р𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡𝑡𝑡)

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡
= 1 + Р𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡𝑡𝑡)

𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡
,   (59)

where РLC 
(total) – is the total force load of the load-car-

rying device: РLC
(total) = Ql + РLC (t), or:

К𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡) = 1 + 𝐶𝐶𝐶𝐶⋅𝑣𝑣𝑣𝑣0⋅𝑡𝑡𝑡𝑡
𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

+ С
𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
⋅ �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
+ 𝑔𝑔𝑔𝑔� ⋅ �𝑡𝑡𝑡𝑡

2

2
− 𝑡𝑡𝑡𝑡3

3𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝
�.   (60)

This coefficient reaches its maximum value at 
the moment t = τp:

К𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡)|𝑡𝑡𝑡𝑡=𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝 = К𝑑𝑑𝑑𝑑(𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝) = К 𝐶𝐶𝐶𝐶⋅𝑣𝑣𝑣𝑣0⋅𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝
𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

С
𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
�𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
+ 𝑔𝑔𝑔𝑔� 𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝

2

6 𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
  . (61)

From (60) it is obvious that in this case Кd (t) 
it is less than in the law of motion ξ(t) (50). The lat-
ter, moreover, results in undesirable oscillations of 
the load on the rope. For ξ(t) (57) there are no such 
fluctuations [23]. Define further the laws of motion 
xr(t), xl(t). For this purpose again using the laws and 

equations (25), (26) and initial conditions:

𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡)|𝑡𝑡𝑡𝑡=0, �̇�𝑥𝑥𝑥𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡)|𝑡𝑡𝑡𝑡=0;  �̇�𝑥𝑥𝑥𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡)|𝑡𝑡𝑡𝑡=0 = 𝑣𝑣𝑣𝑣0;  𝑥𝑥𝑥𝑥𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡)|𝑡𝑡𝑡𝑡=0 = 0.   (62)

For �̈�𝑥𝑥𝑥𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡)   have equation (25), which must be 
solved under the conditions (62) at ξ(t) (57). Have:

𝑥𝑥𝑥𝑥𝑟𝑟𝑟𝑟(𝑡𝑡𝑡𝑡) = �− 𝐶𝐶𝐶𝐶
𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
� ⋅ �𝑣𝑣𝑣𝑣0⋅𝑡𝑡𝑡𝑡

3

6
+ �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
+ 𝑔𝑔𝑔𝑔� ⋅ �𝑡𝑡𝑡𝑡

4

24
− 𝑡𝑡𝑡𝑡5

60⋅𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝
�� + �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
� ⋅ 𝑡𝑡𝑡𝑡

2

2
+ 𝑣𝑣𝑣𝑣0 ⋅ 𝑡𝑡𝑡𝑡.   (63)

𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡) = (−𝑔𝑔𝑔𝑔𝑡𝑡𝑡𝑡2)
2

⋅ � 𝐶𝐶𝐶𝐶
𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
� ⋅ �𝑣𝑣𝑣𝑣0⋅𝑡𝑡𝑡𝑡

3

6
+ �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
+ 𝑔𝑔𝑔𝑔� ⋅ �𝑡𝑡𝑡𝑡

4

24
− 𝑡𝑡𝑡𝑡5

60𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝
��.   (64)

Since at  where V – steady speed of lifting the 
load, it can be used to determine this circumstance τП. 
Generally, the value of V is set by the operating stan-
dards of crane structures of a specific type and load 

lifting mechanisms that are used in this case. Thus, to 
find τp can be used, for example, expression xl(t) (64), 
differentiate it in time t and find the value of this last 
expression at t = τp. Then have:

�̇�𝑥𝑥𝑥𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡)|𝑡𝑡𝑡𝑡=𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝 = 𝑉𝑉𝑉𝑉 ⇔ �−𝑔𝑔𝑔𝑔𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝� + � С
𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
� ⋅ �𝑣𝑣𝑣𝑣0⋅𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝

2

2
+ �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
+ 𝑔𝑔𝑔𝑔� ⋅ 𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝

3

12
� = 𝑉𝑉𝑉𝑉.   (65)

The cubic equation (65) is obtained with regard 
to τП, is solved using the Cardano formulas. In con-
trast, if the value τП is given, using (65), it is easy ex-
plicitly to calculate the value V for a particular variant 

of lifting the load “from the base”/”with pickup”. In 
calculation in the case of dynamic loading of the crane 
loading device when lifting the load “with pickup” 
(“from the base”), other approaches can be used [1]. 
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In particular, it allows neglecting the stiffness of one 
of the elements (ropes, since the elasticity of the met-
al structure of the crane is much higher than that of 
the ropes themselves, and the oscillations of the latter 

quickly damped) and consider only the elasticity of 
the second element of stiffness – the crane structure, 
that is, the mass of the crane mк and the load ml are 
considered as one mass m (Fig. 2).

Figure 2. Scheme of dynamic loading of the load device when lifting the load “with pickup”
Note: a) on overhead cranes; b) and c) design schemes of single- and double-mass systems
Source: [1; 2]

Under the assumptions made, it can be considered 
that the load is lifted as follows. In the first stage, after 
turning on the engine. The rope slack is selected, in 
the second stage – elastic deformation of all structural 
elements (Fig. 2). The second stage continues until the 
force P0 on the load-gripping devices, increasing from 
zero, becomes equal Ql = ml⋅g. Only after that, in the 
third stage, the lifting of the load begins [18]. When 
moving xк the mass of the crane mк with rigidity Cк 
(more precisely, the crane beam as part of the metal 
structure of the crane) kinetic energy:

𝑊𝑊𝑊𝑊 = 𝑚𝑚𝑚𝑚�к ⋅
�̇�𝑥𝑥𝑥к
2

2
,𝑚𝑚𝑚𝑚�к = 𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚к,   (66)

but potential energy:
𝑈𝑈𝑈𝑈 = 𝐶𝐶𝐶𝐶к ⋅ 𝑥𝑥𝑥𝑥к2/2.   (67)

The driving force here P, varies for different 
stages of lifting the load. The equation of motion of 
the system, which arises from the Lagrange equation 
of the second kind, has the form:

𝑚𝑚𝑚𝑚�к ⋅ �̈�𝑥𝑥𝑥к + Ск ⋅ 𝑥𝑥𝑥𝑥к = Р  , (68)

its solution is as follows:

𝑥𝑥𝑥𝑥к = 𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐴𝐴𝐴𝐴 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 + 𝐵𝐵𝐵𝐵 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡, 𝑟𝑟𝑟𝑟 = � 𝐶𝐶𝐶𝐶к
(𝑚𝑚𝑚𝑚к+𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙)

  , (69)

provided that at the beginning of the movement the 
following relations are satisfied for xк(t) and �̇�𝑥𝑥𝑥к(𝑡𝑡𝑡𝑡):   

𝑥𝑥𝑥𝑥к(𝑡𝑡𝑡𝑡)|𝑡𝑡𝑡𝑡=0 = 𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = (𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙+𝑚𝑚𝑚𝑚к)⋅𝑔𝑔𝑔𝑔
𝐶𝐶𝐶𝐶к

;  �̇�𝑥𝑥𝑥к|𝑡𝑡𝑡𝑡=0 = 𝑣𝑣𝑣𝑣0  , (70)

where v0 – the initial speed of lifting the load, i.e. the 
initial speed of movement of the rope when it is fully 
selected (its slack is eliminated); yST – deflection of the 
structure from a static load.

After setting the values of the coefficients А and 
L have:

�
𝑥𝑥𝑥𝑥к = 𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 + 𝑣𝑣𝑣𝑣0

𝑟𝑟𝑟𝑟
⋅ 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡;

�̇�𝑥𝑥𝑥к = −𝑟𝑟𝑟𝑟 ⋅ 𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ⋅ 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 + 𝑣𝑣𝑣𝑣0 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡;
�̈�𝑥𝑥𝑥к = −𝑟𝑟𝑟𝑟2 ⋅ 𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 − 𝑣𝑣𝑣𝑣0 ⋅ 𝑟𝑟𝑟𝑟 ⋅ 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡.

  . (71)

Pdyn – the dynamic load applied to the load-car-
rying device takes the form:

𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙 ⋅ �̈�𝑥𝑥𝑥к = �𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
𝑔𝑔𝑔𝑔
� ⋅ {−𝑟𝑟𝑟𝑟2 ⋅ 𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 − 𝑣𝑣𝑣𝑣0 ⋅ 𝑟𝑟𝑟𝑟 ⋅ 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡}.   (72)

If the condition holds: v0 >> r⋅yST, then from (71) 
have:

𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = −�𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
𝑔𝑔𝑔𝑔
� ⋅ 𝑣𝑣𝑣𝑣0 ⋅ 𝑟𝑟𝑟𝑟 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡.   (73)

The maximum value Pdyn in this case is obtained 
under the condition:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 = −1.   (74)

This mode and condition are implemented 
at high initial load lifting speed (v0). If the ratio: 
v0 << r⋅yST, then from (72) have:

𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = −�𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
𝑔𝑔𝑔𝑔
� ⋅ 𝑟𝑟𝑟𝑟2 ⋅ 𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡.   (75)

The maximum value Pdyn in this case is obtained 
under the condition:

ml
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𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 = −1.   (76)

This mode and condition are implemented at 
low initial load lifting speed (v0). In the general case 
(for arbitrary values of v0) have:

The maximum value Pdyn , which is equal to:

𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

𝑔𝑔𝑔𝑔
⋅ �𝑣𝑣𝑣𝑣02 ⋅ 𝑟𝑟𝑟𝑟2 + 𝑟𝑟𝑟𝑟4 ⋅ 𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2  , (78)

acquires at times t *,determined from the ratio:

𝑟𝑟𝑟𝑟 ⋅ 𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛 ∗ +𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎 �𝑟𝑟𝑟𝑟⋅𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑣𝑣𝑣𝑣0

� = 𝜋𝜋𝜋𝜋
2
⋅ (4𝑛𝑛𝑛𝑛 − 1),𝑛𝑛𝑛𝑛 ∈ 𝑁𝑁𝑁𝑁  . (79)

The full load applied to the load-gripping 
device is as follows:

Р𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙 + 𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙 ⋅ �1 + 1

𝑔𝑔𝑔𝑔
⋅ �𝑣𝑣𝑣𝑣02 ⋅ 𝑟𝑟𝑟𝑟2 + 𝑟𝑟𝑟𝑟4 ⋅ 𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2�  

, (80)
К𝑑𝑑𝑑𝑑(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = 1 + 1

𝑔𝑔𝑔𝑔
⋅ �𝑣𝑣𝑣𝑣02 ⋅ 𝑟𝑟𝑟𝑟2 + 𝑟𝑟𝑟𝑟4 ⋅ 𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2  

and when performing the relation that results in (73), (74), have:

Р𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙 ⋅ �1 + 𝑣𝑣𝑣𝑣0
𝑔𝑔𝑔𝑔
⋅ 𝑟𝑟𝑟𝑟� = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙 ⋅ �1 + 𝑣𝑣𝑣𝑣0

𝑔𝑔𝑔𝑔
⋅ � 𝐿𝐿𝐿𝐿к

(𝑚𝑚𝑚𝑚к+𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙)
�.   (81)

Since 𝐶𝐶𝐶𝐶к = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙/𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙⋅𝑔𝑔𝑔𝑔
𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

,   then from (81) can be obtained:

К𝑑𝑑𝑑𝑑(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = 1 + 𝑣𝑣𝑣𝑣0
𝑔𝑔𝑔𝑔
⋅ � 𝐶𝐶𝐶𝐶к

(𝑚𝑚𝑚𝑚к+𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙)
= 1 + 𝑣𝑣𝑣𝑣0 ⋅ �

1
𝑔𝑔𝑔𝑔⋅𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

⋅ � 𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
(𝑚𝑚𝑚𝑚к+𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙)

�.   (82)

Define further the law of motion xк (t), for 
which there are no oscillations in the considered sys-
tem and the initial conditions (70) and the criterion of 
quality of type motion are performed:

� 1
𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝
⋅ ∫ (𝑥𝑥𝑥𝑥к(𝑡𝑡𝑡𝑡))2𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝

0 �
1/2

⇒ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.   (83)

Considering that in (68) P = const, condition (83) 
is performed at (Euler-Poisson equation):

𝑥𝑥𝑥𝑥к(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) = 0.   (84)

The solution of (84) is sought under the follow-
ing terminal (initial and final) conditions of lifting the 
load “with pickup”:

𝑥𝑥𝑥𝑥к(𝑡𝑡𝑡𝑡)|𝑡𝑡𝑡𝑡=0 = 𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆;  �̇�𝑥𝑥𝑥к(𝑡𝑡𝑡𝑡)|𝑡𝑡𝑡𝑡=0 = 𝑣𝑣𝑣𝑣0;  �̈�𝑥𝑥𝑥к(𝑡𝑡𝑡𝑡)|𝑡𝑡𝑡𝑡=0 = {(𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙 + 𝑚𝑚𝑚𝑚к) ⋅ 𝑔𝑔𝑔𝑔 − 𝐶𝐶𝐶𝐶к ⋅ 𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆} = 𝑚𝑚𝑚𝑚к⋅𝑔𝑔𝑔𝑔
(𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙+𝑚𝑚𝑚𝑚к)

;  �̇�𝑥𝑥𝑥к(𝑡𝑡𝑡𝑡)|𝑡𝑡𝑡𝑡=𝜏𝜏𝜏𝜏П = 𝑉𝑉𝑉𝑉,   (85)

where: V – steady-state speed of lifting the load after 
the transition process (t ≥ τp).

Search for xк (t), which satisfies equation (84) 
and conditions (85) in the form of a spline on t:

𝑥𝑥𝑥𝑥к(𝑡𝑡𝑡𝑡) = 𝑏𝑏𝑏𝑏0 + 𝑏𝑏𝑏𝑏1 ⋅ 𝑡𝑡𝑡𝑡 + 𝑏𝑏𝑏𝑏2 ⋅ 𝑡𝑡𝑡𝑡2 + 𝑏𝑏𝑏𝑏3 ⋅ 𝑡𝑡𝑡𝑡3.   (86)

Then from (85) have:

𝑏𝑏𝑏𝑏0 = 𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆;  𝑏𝑏𝑏𝑏1 = 𝑣𝑣𝑣𝑣0;  2𝑏𝑏𝑏𝑏2 = 𝑚𝑚𝑚𝑚к⋅𝑔𝑔𝑔𝑔
(𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙+𝑚𝑚𝑚𝑚к)

;  𝑏𝑏𝑏𝑏3 = −2𝑏𝑏𝑏𝑏2
3𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝

  , (87)

or:

𝑥𝑥𝑥𝑥к(𝑡𝑡𝑡𝑡) = 𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑣𝑣𝑣𝑣0 ⋅ 𝑡𝑡𝑡𝑡 + 𝑚𝑚𝑚𝑚к⋅𝑔𝑔𝑔𝑔
2⋅(𝑚𝑚𝑚𝑚к+𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙)

⋅ 𝑡𝑡𝑡𝑡2 − 𝑚𝑚𝑚𝑚к⋅𝑔𝑔𝑔𝑔
3𝜏𝜏𝜏𝜏П⋅(𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙+𝑚𝑚𝑚𝑚к)

⋅ 𝑡𝑡𝑡𝑡3.   (88)

The dynamism coefficient Кd (t) has no oscillating 
character in the driving mode (88):

К𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡) = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙⋅�̈�𝑥𝑥𝑥к
𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

= 1 + �̈�𝑥𝑥𝑥к
𝑔𝑔𝑔𝑔

= 1 + 𝑚𝑚𝑚𝑚к
(𝑚𝑚𝑚𝑚к+𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙)

⋅ �1 − 2𝑡𝑡𝑡𝑡
𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝
�.   (89)

Note that its maximum value Kd reaches at the 
initial moment of time t = 0:

К𝑑𝑑𝑑𝑑
(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)(𝑡𝑡𝑡𝑡)�

𝑡𝑡𝑡𝑡=0
= 1 + 𝑚𝑚𝑚𝑚к

(𝑚𝑚𝑚𝑚к+𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙)
.   (90)

The obtained formulas (in the approximation of 
a single-mass model of lifting a load “with a pickup”) 

are quite simple and can be used in practical calcula-
tions, although, they do not consider the influence of 
the second stiffness element that exists in the system 
under consideration (Fig. 2). Accounting for it, the 
system should be considered as a biaxial system with 
two elastic couplings and, accordingly, as having two 
degrees of freedom of motion, with the corresponding 
superposition of oscillations at each of the frequencies 
and finding the maximum during several periods of 
oscillations. Using the Lagrange function for this prob-
lem allows writing in this case the following system of 
equations for xl and xк:

𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �−𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
𝑔𝑔𝑔𝑔
� ⋅ ��𝑣𝑣𝑣𝑣02 ⋅ 𝑟𝑟𝑟𝑟2 + 𝑟𝑟𝑟𝑟4 ⋅ 𝑦𝑦𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠( 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝛼𝛼𝛼𝛼)�,𝛼𝛼𝛼𝛼 = 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 �𝑟𝑟𝑟𝑟⋅𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑣𝑣𝑣𝑣0
�.  (77)
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�𝑚𝑚𝑚𝑚к ⋅ �̈�𝑥𝑥𝑥к + Ск ⋅ 𝑥𝑥𝑥𝑥к + С𝑙𝑙𝑙𝑙 ⋅ (𝑥𝑥𝑥𝑥к − 𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙) = Р𝑟𝑟𝑟𝑟 − 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙 + 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙 = Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙;  Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = Р𝑟𝑟𝑟𝑟 − 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙;  𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙 = 𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙 ⋅ 𝑔𝑔𝑔𝑔;
𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙 ⋅ �̈�𝑥𝑥𝑥𝑙𝑙𝑙𝑙 − С𝑙𝑙𝑙𝑙 ⋅ 𝑥𝑥𝑥𝑥к + С𝑙𝑙𝑙𝑙 ⋅ 𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙 = − 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

   , (91)

where: Рr – the driving force of the lifting mechanism 
drive. Using the second equation of the system (91) 
can establish that:

𝑥𝑥𝑥𝑥к = 1
С𝑙𝑙𝑙𝑙
⋅ (𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙 ⋅ �̈�𝑥𝑥𝑥𝑙𝑙𝑙𝑙 + С𝑙𝑙𝑙𝑙 ⋅ 𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙 + 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙).   (92)

Then, from (92) for �̈�𝑥𝑥𝑥к   have:

�̈�𝑥𝑥𝑥к = 1
С𝑙𝑙𝑙𝑙
⋅ �𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙 ⋅ 𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) + С𝑙𝑙𝑙𝑙 ⋅ �̈�𝑥𝑥𝑥𝑙𝑙𝑙𝑙�.   (93)

Using the relations (92), (93), the first equation 
of the system (93) can be reduced to the equation for 
xl the fourth order, which is a linear inhomogeneous 
differential equation:

𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) + �̈�𝑥𝑥𝑥𝑙𝑙𝑙𝑙 ⋅ �
С𝑙𝑙𝑙𝑙
𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙

+ С𝑙𝑙𝑙𝑙+Ск
𝑚𝑚𝑚𝑚к

� + Ск
𝑚𝑚𝑚𝑚к
⋅ С𝑙𝑙𝑙𝑙
𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙

= С𝑙𝑙𝑙𝑙
𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙⋅𝑚𝑚𝑚𝑚к

⋅ �Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 −
Ск
С𝑙𝑙𝑙𝑙
⋅ 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙�  , (94)

or:

𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) + �̈�𝑥𝑥𝑥𝑙𝑙𝑙𝑙 ⋅ �𝛺𝛺𝛺𝛺𝑙𝑙𝑙𝑙2 + 𝛺𝛺𝛺𝛺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2� + 𝛺𝛺𝛺𝛺к2 ⋅ 𝛺𝛺𝛺𝛺𝑙𝑙𝑙𝑙2 ⋅ 𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙 = 𝛺𝛺𝛺𝛺𝑙𝑙𝑙𝑙2 ⋅
1
𝑚𝑚𝑚𝑚к
⋅ �Т 𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 −

Ск
С𝑙𝑙𝑙𝑙
⋅ 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙�  , (95)

where: 𝛺𝛺𝛺𝛺𝑙𝑙𝑙𝑙2 = С𝑙𝑙𝑙𝑙
𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙

,𝛺𝛺𝛺𝛺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 = С𝑙𝑙𝑙𝑙+Ск
𝑚𝑚𝑚𝑚к

,𝛺𝛺𝛺𝛺к2 = Ск
𝑚𝑚𝑚𝑚к

.  Here introduced 
the following designations: Сl – stiffness of hoisting 
ropes and reduced to them the stiffness of the drive 
elements, N/m; 𝛺𝛺𝛺𝛺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �С𝑙𝑙𝑙𝑙+Ск𝑚𝑚𝑚𝑚к

   reduced frequency, 1/s; 
Ск – stiffness of the metal structure of the crane, N/m; 
mк – reduced weight of the metal structure of the 
crane, kg; ml – weight of the load, kg [8; 9].

The partial frequencies of this system (in s-1) 
r1,2 ≡ Ω1,2 can be obtained from the following relations:

𝛺𝛺𝛺𝛺1,2 = �𝛺𝛺𝛺𝛺𝑙𝑙𝑙𝑙
2+𝛺𝛺𝛺𝛺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2

2
± ��𝛺𝛺𝛺𝛺𝑙𝑙𝑙𝑙2+𝛺𝛺𝛺𝛺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2�

2

4
− 𝛺𝛺𝛺𝛺к2 ⋅ 𝛺𝛺𝛺𝛺𝑙𝑙𝑙𝑙2�

1/2

.   (96)

The duration of the time corresponding to 
the moment of the detachment of the load from the 
support (when lifting the load by the “with pickup” 
 method) is obtained from the following transcendental 
equation [1]:

𝜏𝜏𝜏𝜏0 + � С𝑙𝑙𝑙𝑙
Ск⋅𝛺𝛺𝛺𝛺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

� ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝛺𝛺𝛺𝛺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝜏𝜏𝜏𝜏0) = 𝑔𝑔𝑔𝑔 ⋅ 𝛺𝛺𝛺𝛺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2/�𝑣𝑣𝑣𝑣0 ⋅ 𝛺𝛺𝛺𝛺к2 ⋅ 𝛺𝛺𝛺𝛺𝑙𝑙𝑙𝑙2�  , (97)

where: v0 – speed of lifting the load after its separation 
from the surface of the support.

Quite often v0 is identified with V – is the steady-
state lifting speed of the load [1; 3], i.e. (v0 ≈ V) [3]. Al-
though in the exact analysis of the process of lifting the 
load by the method “with pickup” v0 is from (48). Notably, 
neglect the costs of thermal processes that occur in the 

deformed foundation during its deformation and detach-
ment of the load from it, i.e. neglect the heat losses that 
exist in the foundation during the restoration of its orig-
inal, (almost) undeformed state. At t > τ0 starts lifting 
the load by the method “from the weight”, which is de-
fined above as a system of equations (4), where mr ≡ mк. 
The solution of equation (95) can be given as follows:

�
𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡) = 𝐴𝐴𝐴𝐴1 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛺𝛺𝛺𝛺1 𝑡𝑡𝑡𝑡 + 𝐴𝐴𝐴𝐴2 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛺𝛺𝛺𝛺1 𝑡𝑡𝑡𝑡 + 𝐴𝐴𝐴𝐴3 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝛺𝛺𝛺𝛺2 𝑡𝑡𝑡𝑡 + 𝐴𝐴𝐴𝐴4 ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 𝛺𝛺𝛺𝛺2 𝑡𝑡𝑡𝑡 + 𝑋𝑋𝑋𝑋 ∗,
𝑋𝑋𝑋𝑋 ∗= 1

𝐶𝐶𝐶𝐶к
⋅ �Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 −

Ск
С𝑙𝑙𝑙𝑙
⋅ 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙� ,    (98)

and the constants 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 , 𝑖𝑖𝑖𝑖 = (1,4),   are obtained from the 
following terminal (initial and final) conditions of  lifting 

the load by the “with pickup” method:

𝑥𝑥𝑥𝑥𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡)|𝑡𝑡𝑡𝑡=0 = 0; �̇�𝑥𝑥𝑥𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡)|𝑡𝑡𝑡𝑡=0 = 0; �̈�𝑥𝑥𝑥𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡)|𝑡𝑡𝑡𝑡=𝜏𝜏𝜏𝜏0 = −𝑔𝑔𝑔𝑔; �̇�𝑥𝑥𝑥𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡)|𝑡𝑡𝑡𝑡=𝜏𝜏𝜏𝜏0 = 𝑣𝑣𝑣𝑣0.   (99)

From (98), evidently, the load, which is lifted by 
the method “with a pickup”, is inherent in oscillations 
with partial frequencies, Ω1, Ω2,which causes incon-
venience and dynamic overloading of the crane rope 
system during the implementation of the last series 
of loading and unloading operations [1]. Define what 
mode of movement xl (t) can eliminate the above in-
conveniences. For this, it is required to consider the 

system of equations (4), (6), which is reduced to 
equation (7), but for t > τ0 (when the load has already 
been detached from the support), with the following 
terminal (initial and final) conditions of motion (they 
are valid at the moments of time t ∈ (τ0, τp), where τp – 
the moment of time, when the speed of lifting the load 
reaches a steady state V, value at which a uniform move-
ment (in particular, lifting) of the load is performed:
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𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡)|𝑡𝑡𝑡𝑡=𝜏𝜏𝜏𝜏0 = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
С

; �̇�𝜉𝜉𝜉(𝑡𝑡𝑡𝑡)�
𝑡𝑡𝑡𝑡=𝜏𝜏𝜏𝜏0

= 𝑣𝑣𝑣𝑣0; �̈�𝜉𝜉𝜉(𝑡𝑡𝑡𝑡)�
𝑡𝑡𝑡𝑡=𝜏𝜏𝜏𝜏0

= Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟

;  �̇�𝜉𝜉𝜉(𝑡𝑡𝑡𝑡)�
𝑡𝑡𝑡𝑡=𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝

= 𝑉𝑉𝑉𝑉.   (100)

From equation (7) it can be determined easily ξ(t):

𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡) = 1
𝛺𝛺𝛺𝛺2
⋅ ��𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙+Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
+ 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙

𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙
� − �̈�𝜉𝜉𝜉�.   (101)

The following quality criterion (of this  movement) 

will be searched for:

∫ {𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡)}2𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 ⇒ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝∫
𝜏𝜏𝜏𝜏0

   (102)

If you enter a new variable 𝑡𝑡𝑡𝑡 ∗= 𝑡𝑡𝑡𝑡 − 𝜏𝜏𝜏𝜏0,   then the 
criterion (102) and conditions (100) will be as follows:

�
∫ {𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡 ∗ +𝜏𝜏𝜏𝜏0)}2𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 ∗𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝−𝜏𝜏𝜏𝜏0
0 ⇒ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚;

𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡 ∗)|𝑡𝑡𝑡𝑡∗=0 = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
С

;  �̇�𝜉𝜉𝜉(𝑡𝑡𝑡𝑡 ∗)�
𝑡𝑡𝑡𝑡∗=0

= 𝑣𝑣𝑣𝑣0;  �̈�𝜉𝜉𝜉(𝑡𝑡𝑡𝑡 ∗)�
𝑡𝑡𝑡𝑡∗=0

= Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟

;  �̇�𝜉𝜉𝜉(𝑡𝑡𝑡𝑡 ∗)�
𝑡𝑡𝑡𝑡∗=𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝−𝜏𝜏𝜏𝜏0

= 𝑉𝑉𝑉𝑉.
   (103)

Using the substitution 𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡 ∗ +𝜏𝜏𝜏𝜏0)   (101) and 
substituting it into the motion quality criterion (102), 
obtain the necessary condition for the realisation of this 
criterion (Euler-Poisson equation) of the following form:

𝜉𝜉𝜉𝜉(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)(𝑡𝑡𝑡𝑡 ∗ +𝜏𝜏𝜏𝜏0) = 0.   (104)

Consider the solution of this equation in the 
form of a spline of the third order by the argument

𝑡𝑡𝑡𝑡 ∗ +𝜏𝜏𝜏𝜏0 = 𝑡𝑡𝑡𝑡.   The same will be for 𝑡𝑡𝑡𝑡 ∗≥ 0   or 𝑡𝑡𝑡𝑡 ≥ 𝜏𝜏𝜏𝜏0   to 
find the solution of the equations accordingly:

𝜉𝜉𝜉𝜉(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)(𝑡𝑡𝑡𝑡 ∗) = 0   (105)

and:

𝜉𝜉𝜉𝜉(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)(𝑡𝑡𝑡𝑡) = 0.   (106)

Thus, for 𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡 ∗)   have:

𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡 ∗) = 𝑑𝑑𝑑𝑑0 + 𝑑𝑑𝑑𝑑1 ⋅ (𝑡𝑡𝑡𝑡 ∗)1 + 𝑑𝑑𝑑𝑑2 ⋅ (𝑡𝑡𝑡𝑡 ∗)2 + 𝑑𝑑𝑑𝑑3 ⋅ (𝑡𝑡𝑡𝑡 ∗)3, 𝑡𝑡𝑡𝑡 ∗≥ 0.   (107)

Considering the conditions (103) for 𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡 ∗)   (107), have:

𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡 ∗) = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙
С

+ 𝑣𝑣𝑣𝑣0 ⋅ 𝑡𝑡𝑡𝑡 ∗ + 𝑇𝑇𝑇𝑇 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
2𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟

⋅ (𝑡𝑡𝑡𝑡 ∗)2 + �
(𝑉𝑉𝑉𝑉−𝑣𝑣𝑣𝑣0)−Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
⋅(𝜏𝜏𝜏𝜏П−𝜏𝜏𝜏𝜏0)

3⋅(𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝−𝜏𝜏𝜏𝜏0)2
� ⋅ (𝑡𝑡𝑡𝑡 ∗)3.   (108)

The dynamic component of the force that oc-
curs in the rope system when lifting a load “with a 

pickup” has the following form:

Р𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡𝑡𝑡 ∗) = 𝐶𝐶𝐶𝐶 ⋅ 𝜉𝜉𝜉𝜉(𝑡𝑡𝑡𝑡 ∗) = 𝑄𝑄𝑄𝑄𝑙𝑙𝑙𝑙 + С ⋅ 𝑣𝑣𝑣𝑣0 ⋅ 𝑡𝑡𝑡𝑡 ∗ + 𝐿𝐿𝐿𝐿⋅Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
2𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟

⋅ (𝑡𝑡𝑡𝑡 ∗)2 + 𝐶𝐶𝐶𝐶 ⋅ �
(𝑉𝑉𝑉𝑉−𝑣𝑣𝑣𝑣0)−Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
⋅(𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝−𝜏𝜏𝜏𝜏0)

3⋅(𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝−𝜏𝜏𝜏𝜏0)2
� ⋅ (𝑡𝑡𝑡𝑡 ∗)3.   (109)

The dynamism coefficient К𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡 ∗)   has the following form:

К𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡 ∗) = Р𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑡𝑡𝑡𝑡∗)
𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙⋅𝑔𝑔𝑔𝑔

= 1 + 𝐶𝐶𝐶𝐶⋅𝑣𝑣𝑣𝑣0⋅(𝑡𝑡𝑡𝑡∗)
𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙⋅𝑔𝑔𝑔𝑔

+ 𝐶𝐶𝐶𝐶⋅Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
2𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟⋅𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙⋅𝑔𝑔𝑔𝑔

⋅ (𝑡𝑡𝑡𝑡 ∗)2 +
𝐶𝐶𝐶𝐶⋅�(𝑉𝑉𝑉𝑉−𝑣𝑣𝑣𝑣0)−Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
⋅(𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝−𝜏𝜏𝜏𝜏0)�

𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙⋅𝑔𝑔𝑔𝑔⋅3⋅(𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝−𝜏𝜏𝜏𝜏0)2
 ⋅ (𝑡𝑡𝑡𝑡 ∗)3.   (110)

From (110) evident that К𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡 ∗)   it has no os-
cillatory character. The maximum value this value ac-

quires at 𝑡𝑡𝑡𝑡 ∗= 𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝 − 𝜏𝜏𝜏𝜏0,   namely:

К𝑑𝑑𝑑𝑑(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)(𝑡𝑡𝑡𝑡 ∗) = К𝑑𝑑𝑑𝑑(𝑡𝑡𝑡𝑡 ∗)|𝑡𝑡𝑡𝑡∗=𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝−𝜏𝜏𝜏𝜏0 = 1 + 2С⋅𝑣𝑣𝑣𝑣0⋅(𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝−𝜏𝜏𝜏𝜏0)
3⋅𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙⋅𝑔𝑔𝑔𝑔

+ 𝐶𝐶𝐶𝐶⋅𝑉𝑉𝑉𝑉⋅(𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝−𝜏𝜏𝜏𝜏0)
3⋅𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙⋅𝑔𝑔𝑔𝑔

+ 𝐶𝐶𝐶𝐶⋅Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒⋅(𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝−𝜏𝜏𝜏𝜏0)2

6𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟⋅𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙⋅𝑔𝑔𝑔𝑔
.   (111)

As a rule: τp>>τ0, V≈v0, thus from (111) have:

К𝑑𝑑𝑑𝑑(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)(𝑡𝑡𝑡𝑡 ∗)�
𝑡𝑡𝑡𝑡∗=𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝

= 1 + С⋅𝑉𝑉𝑉𝑉⋅𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝
𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙⋅𝑔𝑔𝑔𝑔

+ 𝐶𝐶𝐶𝐶⋅Т 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒⋅𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝2

6𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟⋅𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙⋅𝑔𝑔𝑔𝑔
.   (112)

Due to the small values of the terms included 
in (112), compared to unity, practically the value of 
the dynamism coefficient for this method of lifting the 
load (as, incidentally, for the case of lifting the load 
“from weight”) differs little from unity (not more than 
10%, exceeding unity).

Discussion
The quality of operation and functioning of the lift-
ing mechanisms of bridge cranes largely depends on 
the proper optimisation of the dynamic loads of rope 
systems due to the handling of goods, and their effi-
ciency is one of the most pressing issues of our time, 
and some problems require immediate solutions. For 
example, the mechanisms with which it can be per-
formed installation and transporting works are quite 
dangerous and cumbersome during operation, this is 



70
Optimisation of dynamic loads of rope systems of lifting mechanisms...

a significant problem in using these mechanisms, and 
it is essential to increase the efficiency of exploring these 
problems to solve them as soon as possible. Most of 
the lifting mechanisms at the moment are outdated both 
technically and morally, and the significant amount of 
resource cranes has greatly decreased.

According to the results of recent studies by 
Q. Guo et al. [24], the constant use of lifting machines 
in such a technically worn-out condition can result in 
their destruction and breakdowns, which causes the 
termination of the cargo flows used by them. On the 
one hand, the provision of high productivity of shift-
ing loads in the river and sea warehouses, ports, con-
struction sites, and production workshops is combined 
with increased dynamic loads in the details of cranes, 
they are one of the main reasons for their transition 
to the limiting environment, after which the efficient 
and high-quality operation of the mechanism is unre-
alistic. The most urgent issue that must be considered 
during the development and operation of the cargo lift-
ing facility is the energy efficiency of this mechanism.

The entire mechanism of lifting machines was 
analysed, and as a result, it was decided that for the 
application of various constructions, especially theo-
retical ones, it is necessary to have a basic knowledge 
of these objects to indicate the physical properties of 
this device and their number, which will allow under-
standing the process of operation of lifting mechanisms 
under the given conditions of their use. The problem 
of energy efficiency of lifting mechanisms was almost 
indecisive before, as there were not enough available 
means of energy saving in the crane drive, and they 
appeared recently. Complex vibrations have an ad-
verse impact on the stability of the elements of lifting 
machines, which results in numerous destructions.

According to the definition of H.M. Omar 
et al. [25], gantry cranes are most often used for the 
construction of civil and industrial facilities. The fea-
tures of operation of these lifting mechanisms are 
that a large part of the work process is represented 
by transient modes, namely starting and deceleration, 
machines for changing the departure and lifting loads. 
Thus, the productivity of the crane is connected with 
the duration of the transitional processes of the ma-
chines for changing the outreach and lifting loads.

It indicates that in the design and modelling 
of gantry cranes used for the construction of various 
structures, it is required to consider all the features of 
the mechanism and its modes that affect the quality 
of operation and ensure proper performance. Efforts 
to reduce the duration of transients in the departure 
change machine are not successful due to the neces-
sity to reduce the load fluctuations that occur during 
transients. All these damages the operational perfor-
mance and reliability of gourd cranes, and, in general, 
lifting and transporting mechanisms.

Researcher Y. Liu [26] determined that there 
are almost no systems for monitoring the energy 

consumption of lifting mechanisms in Ukraine, al-
though lifting machines, compared to other industrial 
equipment and mechanisms, have low efficiency and 
are one of the most energy-efficient mechanisms. 
Very large energy losses in crane electric drives oc-
cur through the outdated control systems of drives, 
inefficient cycles of operation of machines, and their 
worn-out technical condition. In general, this applies 
to 80% of cranes that have reached the end of their 
regulatory service life.

But when modelling lifting mechanisms and 
other industrial equipment, using this class of energy 
consumption monitoring systems, allows for improv-
ing the work of these machines, due to the massive 
number of receiving elements and the large number of 
parts that are involved in the process, thus, it is very 
necessary to consider the specific features of using this 
type of mechanisms and systems, timely investigation 
of data and possible causes of problems, for further 
prospective development of using lifting machines 
and monitoring systems in Ukraine. It is essential to 
draw attention to the development of systems for 
monitoring the energy consumption of cranes, consid-
ering the regulatory requirements for their safe opera-
tion. To improve the reliability of the operation of lift-
ing mechanisms, it is required to reduce the dynamic 
loads on their body and drive parts.

C.M. Niu et al. [27] identified that the cost of 
energy resources is constantly increasing, which opti-
mises research to reduce energy consumption when 
lifting or lowering loads. Suboptimal and unreliable 
choices of cycles of operation of the lifting machine, 
even in the presence of innovative hardware, can 
cause energy overruns during the unloading and load-
ing processes. The investigation and resolution of these 
contradictions can be promising only using the mecha-
tronic approach, through which lifting mechanisms are 
presented as a synergistic combination of electrical, hy-
draulic, mechanical and electronic components.

The results of this mechatronic approach to 
resolving contradictions were analysed and explored 
more precisely, it can be concluded that the efficiency 
of using innovative designs of lifting mechanisms and 
support apparatus, their use allows for keeping energy 
overrun. The main role in the modelling and design 
of mechatronic crane systems is the development and 
calculation of software that allows the implementa-
tion of control of some individual mechanisms, devices 
and parts. During start-up and deceleration of drive 
devices, i.e. transient modes, dynamic loads dangerous 
for lifting mechanisms appear.

M. Ziaei et al. [28] demonstrated that such 
transient modes in cranes have an impact on the en-
ergy and dynamic properties and performance of the 
crane. For a load-lifting machine, the dynamic cycles 
that occur during the transitional modes of movement, 
i.e. lifting or lowering the load, have an impact on the 
magnitude of the moment and force loads in the flexible 
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suspension and drive of the machine. The vibrations 
in the flexible suspension are transferred to the crane 
boom and load it with additional bending moments.

These modes may have a specific modification, 
it happens due to the specific features of the cranes 
that are observed and considered. It is essential to use 
the tower crane in such a way that the oscillatory 
dynamic cycles in its mechanisms are reduced during 
transient modes of movement. Small elimination of 
dynamic loads during the start-up and deceleration of 
gourd cranes helped to increase the overhaul time of 
these cranes many times. 

As noted by N. Zhao et al. [29], modern moni-
toring systems operate on the established mechanism 
link between the replacement of energy losses during 
the operation of lifting mechanisms, namely cranes, 
and their technological condition. At the time of op-
eration of cranes, it changes a lot: the position of the 
crane runway, flanges and rims of the running wheel, 
brake linings, brake pulleys, rope block, drum, bear-
ing and various friction units in crane machines, the 
position of the electric motor winding and the resis-
tance of the separate relay and contact equipment, 
the electromagnetic pusher coil, the viscosity of the 
operating emulsion in gearboxes and electrohydraulic 
brakes. Thus, as a result of these work processes, the 
energy consumption of lifting mechanisms changes.

To optimise the energy performance of lifting 
mechanisms and their electric drives, dynamic loads 
and kinematic parameters of cranes, it is required to 
develop mathematical models that can consider tran-
sient cycles in lifting electric drives, structural vibra-
tions, loosening of loads and represent a set of non-
linear differential equations. It is essential to increase 
funding and improve the skills of employees, to start 
introducing new technologies to improve the design 
and modelling of lifting machines and to reduce errors 
in the operation of these mechanisms. 

Conclusions
The physical-mechanical models for the analysis of 
the process of lifting loads by overhead cranes in two 

ways are substantiated: “from weight” and “with pick-
up”/”from the base”. The laws of motion of the ele-
ments of these models within the one- and two-mass 
calculation schemes are determined, which allows 
for avoiding fluctuations of the load and significantly 
(in some cases, several times) reducing the value of 
the dynamism coefficients. In the future, it is essen-
tial to improve, according to the authors of this work, 
the investigation of the processes of lifting loads by 
overhead cranes in various ways by considering the 
discrete-continuous properties of systems and lifting 
mechanisms designed for this purpose, and to improve 
control processes through using modern mechatronic 
control systems.

The main problems of increasing the efficiency 
and optimisation of dynamic loads of rope systems of 
lifting mechanisms of overhead cranes during cargo 
handling are mediocre training, problems of proper 
modelling and design of monitoring systems, mul-
tiple errors in the preparation for the operation of 
lifting machines, these problems are and will be rel-
evant and require further investigation. The obtained 
results demonstrate that it is essential to be able to 
eliminate uncertainties in the process of functioning 
lifting machines if a specific scheme and rules are fol-
lowed when operating the lifting mechanisms of over-
head cranes. In this research, the purpose of the study 
was achieved, namely, the dynamic loads that arise in 
the rope systems of lifting machines of bridge cranes 
during start-up and deceleration were analysed, and effi-
cient ways to help reduce these loads were found, the 
magnitude and nature of changes in dynamic loads 
in the elements of the lifting mechanisms of bridge 
cranes were identified, a comprehensive dynamic 
analysis of the lifting mechanisms of the bridge crane 
and its elastic elements was performed. To improve 
these mechanisms in the country, it is essential to in-
crease the use and development of lifting machines, 
especially overhead cranes. In addition, it is necessary 
to draw attention to the quality of the elements and 
introduce newly developed methods for their quality 
development.
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Анотація.
Актуальність. У даному дослідженні приділена значна увага аналізу динамічних навантажень, які виникають 
у канатних системах вантажопідйомних механізмів мостових кранів під час пуску та гальмування, а також 
зменшенню цих навантажень.

Мета. Для виявлення величини та характеру зміни динамічних навантажень у елементах вантажопідйомних 
механізмів мостових кранів проведений всебічний динамічний аналіз саме механізму підйому мостового 
крану та його пружних елементів (канатних систем). 

Методи. Динамічний аналіз вказаних вище механізмів та систем проведено на обґрунтованих математичних 
моделях кранів мостового типу (одно- та двомасових). 

Результати. Аналіз отриманих розрахунків математичних моделей механізму підйому вантажу мостових 
кранів показав, що динамічні навантаження, які діють на елементи конструкцій та приводних механізмів, 
мають коливний характер і по величні співставлені зі статичними навантаженнями. Тому для зменшення 
динамічних навантажень в елементах конструкцій (зокрема, у канатах) під час перехідних процесів у 
таких вантажопідйомних механізмах мостових кранів запропоновано провести оптимізацію режимів 
руху їх приводних механізмів. Для мінімізації інтегральних функціоналів використовувались методи 
класичного варіаційного числення, математичної фізики та диференціальні рівняння, які моделюють 
динаміку процесів навантаження канатних систем та приводів мостових кранів, а також були враховані 
термінальні (початкові та кінцеві умови руху подібних систем), що дозволило однозначно розв’язати 
оптимізаційну задачу. Важливе місце в такій оптимізації займає вибір критерію оптимізації. Серед таких 
критеріїв використовувались інтегральні критерії оптимізації. У якості таких інтегральних критеріїв 
оптимізації використовувались середньоквадратичні значення діючих навантажень у пружних елементах 
(канатах) мостових кранів. 

Висновки. Такі інтегральні критерії являють собою інтегральні функціонали, які, як правило, відображають 
небажані властивості машин та їхніх механізмів, тому вони підлягають мінімізації 

Ключові слова: динамічна оптимізація, канатні системи, вантажопідйомні механізми, мостові крани, 
обробка вантажів, перехідні процеси


