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Introduction. The dynamic behavior of ellipsoidal reinforced shells is of interest because they are widely used in

modern engineering structures. So far, only the harmonic vibrations of reinforced shells of simple geometry (cylindrical, conical,

spherical) have mainly been studied [1–3, 6, 19]. The forced vibrations of reinforced shells under impulsive loads were studied in

[7–9, 18]. There are very few studies on the dynamic behavior of reinforced shells of more complex geometry. Noteworthy are

the papers [8–14] which report results on the forced vibrations of shells of revolution, including reinforced ellipsoidal shells.

Mathematically, both statement and solution of such problems are very complicated (use of the equations of elasticity,

formulation of shell–rib interface conditions, development of a numerical problem-solving algorithm, etc.).

Here we will derive the equations describing the nonaxisymmetric vibrations of a rib-reinforced ellipsoidal shell. To

describe the casing and ribs, we will use the refined theory of shells and beams based on the Timoshenko hypotheses [9, 15]. To

derive the vibration equations, we will use the Hamilton–Ostrogradskii variational principle. The numerical approach to solving

the dynamic equations employs the integro-interpolation method to construct finite-difference schemes for an equation with

discontinuous coefficients. We will solve, as a numerical example, the problem of the nonaxisymmetric vibrations of a

transversely reinforced ellipsoidal shell under a distributed internal load normal to the shell surface.

1. Problem Formulation. Consider an inhomogeneous elastic structure that is an ellipsoidal shell reinforced with

transverse ribs. The mid-surface of the casing is described by the following formulas [4, 5]:
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where �

1
and �

2
are the meridional and circumferential Gaussian curvilinear coordinates on the shell surface; k b a� / is the

ellipse aspect ratio; a and b are the ellipse semiaxes.

The expressions for the metrics and the shape of the shell’s mid-surface are
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The coefficients of the first quadratic form and the curvature of the mid-surface are given by
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To mathematically model the dynamic deformation of the structure, we will use the geometrically nonlinear

Timoshenko-type theory of shells based on the following assumptions.

The variation of the displacements throughout the thickness of the shell in the coordinate system ( , , )s s z
1 2

is described by

u s s z u s s z s s
z
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where u u u
1 2 3 1

, , , � , �
2

are the components of the generalized displacement vector of the mid-surface; s A
1 1 1
� � , s A

2 2 2
� � ,

where À
1

and À
2

are the coefficients of the first quadratic form of the ellipsoidal shell.

The expressions for the quadratic approximation of the strains in the shell can be found in [16]:
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2. Basic Equations. To mathematically model the deformation of the jth rib aligned with the �

2
-axis, we will

hypothesize that the rib cross-section is undeformable, as per the geometrically nonlinear Timoshenko beam theory. We will use

the following approximation of the displacements in the cross-section of the jth rib:

U x s z U s z s
j

xz

j j1 2 1 2 1 2
( , , ) ( ) ( )� � � ,

U x s z U s z s
j

xz

j j2 2 2 2 2 2
( , , ) ( ) ( )� � � ,
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j
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j3 2 3 2
( , , ) ( )� , (2.1)

where U
1j

, U
2j

, U
3j

, �
1j

, �
2j

are the components of the generalized displacement vector of the cross-sectional center of gravity of

the jth rib.
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The expressions for the quadratic approximation of the strains in the ribs become
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The interface conditions relate the components of the displacement vector of the cross-sectional center of gravity of the

jth rib aligned with the �

2
-axis and the components of the generalized displacement vector of the mid-surface [1, 3, 8, 9]:
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where h h h
cj j

� �05. ( ) is the distance from the mid-surface to the centroidal line of the jth rib; h
j

is the height of the jth rib

aligned with the �

2
-axis; �

1 j
is the coordinate of the projection line of the cross-sectional center of gravity of the jth rib onto the

coordinate mid-surface of the casing.

To derive the equations of motion, we will use interface conditions in integral form [12].

To derive the equations of the vibrations of the discretely reinforced structure, we will use the Hamilton–Ostrogradskii

variational principle:
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where Ï
0

and K
0

are the potential and kinetic energy of the casing; Ï
j

and K
j

are the potential and kinetic energy of the jth rib;

A is the work done by external forces.

The expressions for �K and �Ï are

� � �Ï Ï Ï
j

j

n

� �

�

�0

1

2

, � � �K K K
j

j

n

� �

�

�0

1

2

,

�� �� �� �� �� ��Ï T T S T T

S

0 11 11 22 22 12 13 13 23 23
� � � � �

��

�� � � �M M H ds
11 11 22 22 1 2

�� �� �  ( ) ,

� �� �� �� �� ��Ï T T T M M
j j j j j j j j j j
� � � � �

21 21 22 22 23 23 21 21 22� �22 2

2

j

l

dl
�

,

695



� � � � �K h

U

t

U

t

U

t

U

t

U

t

U

t
S

0

1 1 2 2 3 3
�













�













�













�

�

���
�













�













�

�

�

�

�

�

�

�

�

 

!

h

t t t t

dS

2

1 1 2 2

12

�

�

� �

�

�

,

� � � � �K h

U

t

U

t

U

t

U

t

U

t

U

t
j j j

j j j j j j

�













�













�













�
1 1 2 2 3 3

�

�
�

l
2

�













�













�

 

!

!

I

F t t

I

F t t

dl
crj

j

j j j

j

j j
�

�

� �

�

�

1 1 2 2 2

2
. (2.5)

Performing the standard operations of variation and integration and taking the interface conditions (2.3) into account,

we obtain two groups of equations:

(i) the equations of vibrations of the casing between ribs:
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(ii) the equations of vibrations of the jth rib aligned with the �

2
-axis;
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Equations (1.11) and (1.13) are supplemented with the natural boundary and initial conditions [12].

3. Procedure for Numerical Solution of Nonlinear Problems. Equations (2.6) and (2.8) constitute a system of

nonlinear partial differential equations for the variables s
1
, s

2
, and t with discontinuities in s

1
. The discontinuities are the

projection lines of the cross-sectional centers of gravity of the transverse ribs onto the mid-surface of the ellipsoidal shell. In this

connection, the numerical algorithm for solving the original problem is as follows: find the solution in the smooth region

between ribs (2.6) and on the discontinuity lines (2.8) [8, 9]. The difference algorithm is based on the integro-interpolation

method for the construction of difference schemes with respect to the space coordinates s
1

and s
2

and an explicit finite-difference

scheme with respect to the time coordinate t [17]. The components of the generalized displacement vector are approximated at

the integer points of the difference mesh, while the strains and forces at half-integer points. Such an approach maintains the

divergent difference representation of the differential equations and ensures the conservation of total mechanical energy [3]. The

continuous system is reduced to the finite-difference one in two steps.

The first step is the finite-difference approximation of the divergent vibration equations written for forces and moments.

Integrating Eqs. (2.6) and using the explicit approximation with respect to the time coordinate, we obtain the following

difference equations in the smooth region of the ellipsoidal shell:
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where the components of the generalized displacement vector U u u u
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� ( , , , , )
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� � of the mid-surface of the ellipsoidal

shell are calculated at the integer points of the difference meshU u u u
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space coordinates.

Integrating Eqs. (2.8) and using the explicit approximation with respect to the time coordinate, we obtain the following

difference equations for the jth rib:
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where the components of the generalized displacement vectorU u u u
j j j j
� ( , ,

1 2 3
, �

1 j
, �

2 j

T
) of the cross-sectional centers of

mass of the jth rib are calculated at the integer points of the difference mesh with respect to the space coordinates.

The second step is the finite-difference approximation of the forces and moments and the strains for the finite-difference

energy equation [15]. Equations (2.7) and (2.9) are approximated as in [12].

To analyze the stability of linearized difference equations, we will use the necessary stability conditions,

"t # 2/ � , (3.3)

where � � �� max( , )
0 j

, j J�1, , are the maximum natural frequencies of the discrete-difference system of, respectively, the

casing and the jth rib.
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4. Numerical Example. Let us consider, as a numerical example, the forced vibrations of a rib-reinforced ellipsoidal

shell (Fig. 1) with clamped edges in the domain D � {�
10

# �

1
# �

1N
, �

20
# �

2
# �

2 N
} under a distributed normal load

P t
3 1 2

( , , )� � . The boundary conditionsU ( , )� �

10 2
�U

N
( , )� �

1 2
� 0,U ( , )� �

1 20
�U

N
( , )� �

1 2
� 0. The initial conditions

for all the components of the generalized displacement vector at t � 0:

u u u
1 1 2 2 1 2 3 1 2 1 1 2 2 1 2

( , ) ( , ) ( , ) ( , ) ( , )� � � � � � � � � � � �� � � � � 0,







�







�







�







u

t

u

t

u

t

1 1 2 2 1 2 3 1 2 1 1 2
( , ) ( , ) ( , ) ( , )� � � � � � � � �

t t

�







�

� � �

2 1 2
0

( , )

.

The distributed normal load P t
3 1 2

( , , )� � is given by

P t A

t

T

t t T
3 1 2

( , , ) sin [ ( ) ( )]� �

&

' '� % � � ,

where A and T are the amplitude and duration of the load (A �10
6

Pa, T � %

�

50 10
6

sec).

The geometrical and mechanical parameters of the shell:

�

&

10

12

� , � &

&

1

12
N

� � , �

&

20

2

� � , �

&

2

2
N

� ,

à

h

� 60,

b

a

� 1.5,

E E
1 2

10
7 10� � % Pa, ( (

12 21
� � 0.33, � � %27 10

3
. kg/m

3
.

The mechanical parameters of the ribs: Å Å
j
�

1
, � �

j
� . The transverse ribs are located in the sections �

1 j
�

7

24

5

24

& &� j, j � 0 1 2, , , along the �

2
-axis.

Figures 2–5 show the most typical curves for the stress $

22
and the force Ò

22
for t T

N
� 35 , � � &)

10 1
2# # (due to

symmetry with respect to �

1
), and �

2
0� . They can be used to analyze the stress state of the structure.

Figures 2 and 3 show the stress $

22
as a function of �

1
for outside and inside arrangement of ribs, respectively. Curves

1, 2, and 3 correspond to t T
1
� , t T

2
3� , and t T

3
8� , respectively.

Figures 4 and 5 show similar curves 1, 2, and 3 for the force Ò
22

at t T
1

3� , t T
2

6� , and t T
3

9� .

It can be seen where exactly the ribs in the sections �

1 j
( , , )j � 0 1 2 are located. The maximum amplitudes of the stress

$

22
in the shells with inside and outside ribs differ by 25% (curve 2 in Figs. 2 and 3), while the values of the force Ò

22
differ by

47% (curve 3 in Figs. 4 and 5).
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Figure 6 shows the time dependence of the stress $

22
at the characteristic point ( / , )� & �

1 2
2 0� � at which the

quantities of interest are maximum in magnitude for t T
N

� 35 . Curves 1 and 2 represent the outside and inside arrangement of

ribs, respectively. The maximum amplitudes of the stress $

22
in the shells reinforced with outside and inside ribs differ by 10%.

Conclusions. Forced nonaxisymmetric vibrations of a rib-reinforced ellipsoidal shell have been studied. The casing

and ribs have been described using the refined theory of shells and beams based on the Timoshenko hypotheses. To derive the

vibration equations, the Hamilton–Ostrogradskii variational principle have been used. The numerical approach to solving the

dynamic equations employs the integro-interpolation method to construct finite-difference schemes for an equation with

discontinuous coefficients. Results on the nonaxisymmetric vibrations of a transversely reinforced ellipsoidal shell under a

distributed internal load have been presented as a numerical example.
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