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Abstract. In this study, we examine the multifractal cross-correlation relation-
ships between stock and cryptocurrency markets. The measures of complexity
which can serve as indicators (indicators-precursors) in both markets are retrieved
from Multifractal Detrended Cross-Correlation Analysis. On the example of theAQ1

S&P 500 and HSI stock indices that are used most by investors to gauge the sta-
tus of the economy in the world, and the cryptocurrency Bitcoin, which mostly
determines the existence of the crypto market, we assess the variation of multi-
fractality and correlations in both markets. Using the sliding window approach,
we localize their dynamics across time and indicate a high degree of non-linearity
with dominant anti-persistency during crash periods for each index. The exis-
tence of periods with high and low cross-correlations for stock and crypto markets
provides prospects for reliable trading with several pairs of assets and effective
diversification of their risks.

Keywords: Stock market · crypto market · cross-correlations · multifractal
analysis · crash · complex systems · indicator-precursor

1 Introduction

After the COVID-19 pandemic and during the Russia-Ukraine war [1, 7, 8, 24, 25,
28, 37, 46, 53], decentralized finance with its one of the most popular representatives
Bitcoin (BTC) gained rapid popularity [2, 10, 17, 19, 50]. These innovations gained
attention from policymakers, financial regulators, scientists, and ordinary people, who
despite the regulatory laws in their country, continue to help people using the benefits of
decentralized financial operation and analyze it from the perspective of complex systems
[15, 47, 57].
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2 A. Bielinskyi et al.

Since approximately June 2021, the correlation between stock and crypto markets
started an upward trend. In particular, this can be connected to the growing number of
financial instruments in the crypto market, which makes investors behave in a similar
way as to the stock market. Since BTC is still developing digital asset, the fluctuations in
it are violent and further dynamics begins to be speculated. Thus, correlations between
stock and crypto markets vary across time, demonstrating non-linear dependence.

One of the possible approaches to measure long-term memory (correlations) in time
series, which was called rescaled range analysis (R/S), was proposed by Hurst [22].
Lo found that classical R/S analysis was sensitive to short-term memory of a system,
which may lead to bias error of nonstationary time series [32]. Considering the limita-
tions of R/S analysis, Peng et al. [40] developed detrended fluctuation analysis (DFA).
Kantelhardt extended classical DFA to a multifractal DFA that gives the possibility to
study long-term memory of both small and large fluctuations using a range of statisti-
cal moments [27]. Interesting for us methods were developed by Podobnik and Stanley
[41] and then extended to multifractal version by Zhou [56], that gives the possibility
to study long-range cross-correlations between two nonstationary time series such as
crypto and stock markets. Classical multifractal DFA (MF-DFA) and multifractal exten-
sion of detrended cross-correlation analysis (MF-DCCA) have been widely applied to
such complex financial systems as foreign exchange markets, stock markets, crude oil
market, carbon and commodity markets, futures, investment strategies, and even for
Twitter happiness sentiment, mass and new media [9, 13, 31, 33–36, 54, 55].

The aim of this study is to study the degree of cross-correlation between one of the
most capitalized and developed stock markets of the USA and China represented by the
Standard and Poor’s 500 (S&P 500) and the Hang Seng (HSI) with the cryptocurrency
market represented by BTC. All data we take from Yahoo! Finance [48] for the period
from September 15, 2014 to May 22, 2022 to make it comparable with the data range
of BTC dates provided by the mentioned data source. Also, we present the indicators
(indicators-precursors) of crash phenomena in stock and crypto markets based on MF-
DCCA.

2 Multifractal Detrended Cross-Correlation Analysis

Multifractal detrended cross-correlation analysis that was derived from standard DCCA
gives multifractal characteristics derived from power-law cross-correlations of time
series [56]. This approach modifies standard detrended covariance fluctuation func-
tion to q th order. For its calculations, we take two time series {xi|i = 1, 2, . . . , N }
and {yi|i = 1, 2, . . . , N } and find their cumulative profiles X (i) = ∑i

k=1[xk − 〈x〉] and
Y (i) = ∑i

k=1

[
yk − 〈y〉], where 〈·〉 is an average of an analyzed series.

Then, by dividing the series into Ns ≡ int(N/s) non-overlapping segments v of equal
length s, we explore how evolves the covariance of the residuals of two systems:

f 2(v, s) = 1

s

∑s

i=1
{X [(v − 1)s + i] −X̃ v(i)

}
×

{
Y [(v − 1)s + i] − Ỹ v(i)

}
, (1)

where X̃ v(i) and Ỹ v(i) are m-order polynomials for each sub-series v.
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The Analysis of Multifractal Cross-Correlation Connectedness 3

Since N is usually not an integer multiple of s, we may neglect the last part of a
time series. Thus, we have to repeat the procedure of division from the end of the series
and obtain 2Ns sub-series v (v = 1, . . . , 2Ns). Then, we apply the equation above to the
reversed segments:

f 2(v, s) = 1

s

∑s

i=1

{X [N − (v − 1)s + i]− X̃ v(i)
}

×
{

Y [N − (v − 1)s + i] − Ỹ v(i)
} . (2)

As the result, we calculate the fluctuation function Fq(s) for the combination of
various scales s and statistical moments q:

Fq(s) =
⎧
⎨

⎩

(
1

2Ns

∑2Ns
v=1

[
f 2(v, s)

]q/2
)1/q

, q �= 0,

exp
(

1
4Ns

∑2Ns
v=1 ln

[
f 2(v, s)

])
, q = 0.

(3)

By analyzing the log-log plots of Fq(s) versus s, we can get the scaling behavior
of the fluctuation function. Particularly, if time series are power-law cross-correlated,
then Fq(s) ∝ shxy(q), where hxy(q) represents a multifractal generalization of power-law
cross-correlation Hurst exponent. For q = 2, it is the cross-correlation scaling exponent,
which is similar to the known Hurst exponent H [22].

This extension of the Hurst exponent works in the same way:

1. If hxy(2) > 0.5, the cross-correlations between time series are presented to be persis-
tent: an increase (a decrease) in one time series is followed by an increase (a decrease)
in another time series.

2. If hxy(2) < 0.5, the cross-correlations between time series are presented to be anti-
persistent: an increase in one time series is likely to be followed by a decrease in the
other time series.

3. If hxy(2) ≈ 0.5, both time series follow a random walk, i.e., there are no correlations
between them.

4. If hxy(2) > 1, both time series are presented to be highly correlated and non-stationary.

Values of q emphasize the density of small (large) fluctuations. If those values are
negative, we make an accent on scaling properties of small fluctuations. For positive
values, scaling properties of the large magnitudes dominate. Generally, if our multifractal
characteristics do not depend on q values, the studied time series is presented to be
monofractal.

Except for the cross-correlation Hurst exponent, using the standard DCCA algorithm,
we can compute the standard DCCA cross-correlation coefficient ρDCCA(s) between time
series [52]:

ρDCCA(s) = F2
DCCA(s)

FDFA{x}(s) × FDFA{y}(s)
. (4)
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4 A. Bielinskyi et al.

In (4), F2
DCCA(s) is the detrended covariance function between x and y from DCCA;

FDFA(s) is the standard DFA [40] and −1 ≤ ρDCCA(s) ≤ 1. In a similar way to the classi-
cal correlation coefficient, ρDCCA = 1 means that time series are positively correlated and
co-move synchronically; ρDCCA = −1 denotes that time series move anti-persistently;
ρDCCA = 0 presents that there is no correlation between two time series.

For further calculations, through the multifractal (Rényi) mass exponent τ(q) =
qhxy(q)−1 [38], we define the singularity strength (Hölder exponent) through a Legendre
transform [18, 20, 21]:

α(q) = hxy(q) + q

[
dhxy(q)

dq

]

(5)

and the singularity (multifractal) spectrum [18, 21]:

f (α) = q
[
α(q) − hxy(q)

] + 1. (6)

If critical events dominate in our system, the singularity spectrum has a long-left
tail that indicates the dominance of large events. The right-tailed multifractal spectrum
indicates sensitivity to events of small magnitude. The symmetrical spectrum represents
an equal distribution of small and large fluctuations.

Except for those characteristics that were presented before, we would like to calculate
the width of the multifractal spectrum which can be defined as

�α = αmax − αmin. (7)

In (7), αmin and αmax are the ends of f (α). The wider �α is, the more complex
structure, the more uneven distribution we have, and the more violent fluctuations on
the surface of our time series. On the contrary, smaller multifractal width indicates that
the time series are uniformly distributed. Thus, their structure is much simpler.

Except �α of the whole spectrum, we can calculate widths of its left (L) and right
(R) tails:

{
L = α0 − αmin

R = αmax − α0
, (8)

for which α0 = argmaxα f (α). The wider one of this width is, the more uneven dis-
tribution we have. Greater value of L points on the wider right tail of the multifractal,
which corresponds to higher complexity due to large fluctuations. On the contrary, if R
becomes wider, we have higher complexity due to fluctuations with small magnitude. If
both values are equal, both small and large fluctuations are uniformly distributed. Such
asymmetry (skewness) is better reflected by the long tail type �S [23]:

�S = R − L (9)

and asymmetry coefficient A [14, 16, 39]:

A = L − R

L + R
. (10)
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The Analysis of Multifractal Cross-Correlation Connectedness 5

Negative value for A would highlight the dominance of small fluctuations (right-
sided asymmetry). Consequently, positive values for A would denote an increase of
heterogeneity for large fluctuations (left-sided asymmetry). When A = 0, the spectrum
is presented to be symmetric.

For �S < 0, we have wider left tail, which tells about insensitiveness of a time series
to small fluctuations, while for �S > 0, we expect to have less fluctuated time series.

Another option is to find the difference between the maximum and the minimum
probability subsets �f [11, 12, 51]:

�f = f (αmin) − f (αmax). (11)

For �f < 0, we have the higher chance of occurring decreasing direction, while for
�f > 0 we have the opposite relation.

3 Experiments and Empirical Results

Further, for measuring the degree of multifractal cross-correlations between S&P 500,
HSI, and BTC, we present the comparative dynamics of the described indicators calcu-
lated with the usage of the sliding window approach [5, 6] along with the studied series.
The presented measures are calculated for the standardized returns of S&P 500, HSI,
and BTC, where returns are calculated as

G(t) = ln x(t + �t) − ln x(t) ∼= [x(t + �t) − x(t)]/x(t) (12)

for t = 1, . . . , N −1. Here, N is the length of the initial time series, and the standardized
version of G can be calculated as g(t) ∼= [G(t) − 〈G〉]/σ with σ representing standard
deviation of G; �t – time lag (in our case �t = 1); 〈· · · 〉 – average over the time period
under study.

Figures below include such measures as:

• the cross-correlation multifractal function Fq(s), the generalized cross-correlation
Hurst exponent hxy(q), the multifractal cross-correlation Rényi exponent τ(q), and
the multifractal cross-correlation spectrum f (α);

• the DCCA correlation coefficient ρDCCA for a long-term (s = 250 days − ρlast) and
midterm (s = 125 days − ρmiddle);

• the generalized cross-correlation Hurst exponent (hxy(2));
• the width of multifractal spectrum �α;
• the singularity exponents α0, αmin, αmean, αmax;
• the widths of left (L) and right (R) tails of f (α);
• the long tail type �S;
• the asymmetry coefficient A;
• the height of the multifractal spectrum �f .

We expect our indicators to behave in a particular way during the critical event:
increase or decrease. Cross-correlation measures are estimated with:

• the sliding window of 250 days and step size of 1 day;
• m = 2 for fitting local trends in Eqs. (1) and (2);
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6 A. Bielinskyi et al.

• the values of q ∈ [−5; 5] with a delay 0.1 to have a better view of scales with small
and large fluctuation density;

• the time scale s varies from 10 to 1000 days for the whole time series and from 10 to
250 days for the sliding window method.

In Fig. 1 multifractal characteristics of the pair S&P 500-BTC are presented.

Fig. 1. The log-log plot of the cross-correlation fluctuation function Fq(s) versus time scale s (a),
the generalized cross-correlation Hurst exponent hxy(q) versus the order q (b), the multifractal
cross-correlation mass exponent τ(q) versus the order q (c), and the multifractal cross-correlation
spectrum f (α) versus the cross-correlation singularity exponent α for the pair S&P 500-BTC

In Fig. 1, a the fluctuation function Fq(s) follows the power-law, and it appears to
be wide for s < 100.

In Fig. 1, b we see that hxy(q) appears to be non-linear. For q < 0, the general-
ized cross-correlation Hurst exponent responds precisely persistent dynamics, whereas
for large fluctuations (q > 0) between two indices we should expect anti-persistent
dynamics.
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The Analysis of Multifractal Cross-Correlation Connectedness 7

In Fig. 1, c the multifractal Rényi exponent remains mostly linear for q < 0, which
is an indicator of mostly monofractal cross-correlation dynamics of small fluctuations,
while for q > 0, cross-correlations dynamics demonstrates higher multifractality.

Figure 1, d demonstrates that f (α) is broad, which is an indicator of highly complex
non-linear dynamics of two systems. Moreover, this spectrum is skewed toward left. We
can conclude that multifractal cross-correlation structure formed by S&P 500 and BTC
has higher sensitivity to larger local fluctuations.

In Fig. 2 multifractal characteristics of the pair HSI-BTC are presented.

Fig. 2. The log-log plot of the cross-correlation fluctuation function Fq(s) versus time scale s (a),
the generalized cross-correlation Hurst exponent hxy(q) versus the order q (b), the multifractal
cross-correlation mass exponent τ(q) versus the order q (c), and the multifractal cross-correlation
spectrum f (α) versus the cross-correlation singularity exponent α for the pair HSI-BTC

In Fig. 2 we can see that multifractal cross-correlations for HSI-BTC are presented
to be weak.

The fluctuation function Fq(s) in Fig. 2, a follows power-law, but in general, it
appears to be narrow for all scales.

In Fig. 2, b we see that hxy(q) is presented to be non-linear. For q < 0, the generalized
exponent hxy(q) > 0.59, which implies that small fluctuations between two indices
behave persistently. For large fluctuations (q > 0), the generalized exponent hxy(q) >

0.55, which shows that even large fluctuations between two markets remain correlated.
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8 A. Bielinskyi et al.

In Fig. 2, c the multifractal Rényi exponent remains mostly linear across different
statistical moments q, which demonstrates that most of the cross-correlation multifractal
behavior between two markets is weak.

Figure 2, d demonstrates that f (α) is not concentrated in one point, which proves
that cross-correlation dynamics of the studied systems demonstrates multifractal char-
acteristics. The spectrum demonstrates a precisely uniform shape, which indicates a
relatively uniform contribution of large and small fluctuations. However, compared to
other studied pairs, the spectrum of HSI-BTC looks narrow.

We conclude that for these indices, over a range of q and s values, multifractal
cross-correlations are presented to be insignificant.

Next, in Fig. 3 we present multifractal characteristics of two stock indices – S&P
500 and HSI.

Fig. 3. The log-log plot of the cross-correlation fluctuation function Fq(s) versus time scale s (a),
the generalized cross-correlation Hurst exponent hxy(q) versus the order q (b), the multifractal
cross-correlation mass exponent τ(q) versus the order q (c), and the multifractal cross-correlation
spectrum f (α) versus the cross-correlation singularity exponent α for the pair S&P 500-HSI
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The Analysis of Multifractal Cross-Correlation Connectedness 9

In Fig. 3 we can see that multifractal cross-correlations for S&P 500-HSI are
presented to be strong.

The fluctuation function Fq(s) in Fig. 3, a follows power-law, and it appears to be
wide for a range of many scales.

In Fig. 3, b we see that hxy(q) is presented to be non-linear. For q < 0, the
generalized exponent hxy(q) demonstrates that small fluctuations between two stocks
represent persistent dynamics, whereas for large fluctuations (q > 0), the generalized
cross-correlation Hurst exponent hxy(q) has the tendency to be less than 0.50.

In Fig. 3, c the multifractal Rényi exponent remains mostly non-linear across different
statistical moments q, which demonstrates that most of the cross-correlation behavior
of two markets demonstrates high degree of multifractality.

Figure 3, d demonstrates that f (α) is the broadest among other spectrums, which
implies that multifractal cross-correlation dependence in the stock market has to be
the biggest. According to the presented spectrum, fluctuations with small and large
magnitudes have approximately equal influence on each other.

We conclude that for these indices, over a range of q and s values, multifractal
cross-correlations are presented to be significant.

In Fig. 4 we would like to present the plots of ρDCCA versus time scale s for S&P
500-BTC, HSI-BTC, and S&P 500-HSI.

Our analysis of the DCCA correlation coefficient across different time scales demon-
strates that the cross-correlations between stock indices and BTC are presented to be
weak in the short term (less than 100 days), but tend to increase for a long-term period.
For the pair HSI-BTC, cross-correlations are presented to be weak even for s < 600 days.
Since then, the cross-correlation coefficient ρDCCA > 0.3. As is expected for the stock
market, both S&P 500 and HSI demonstrate a high degree of correlation across many
time scales. Using the sliding approach, we can track across time how the non-linear
dynamics of two systems change dependently on each other.
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10 A. Bielinskyi et al.

Fig. 4. The DCCA cross-correlation coefficient ρDCCA(s) versus time scale s for the pairs: S&P
500-BTC (a), HSI-BTC (b), and S&P 500-HSI (c)
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The Analysis of Multifractal Cross-Correlation Connectedness 11

Figure 5 presents the comparative dynamics of coefficient ρDCCA along with S&P 500
and HSI calculated for pairs S&P 500-BTC, HSI-BTC, and S&P 500-HSI.

Noticeable long-term correlation can be observed for the periods since 2018. For
the crisis, because of the coronavirus pandemic, this correlation is also observed. By the
end of 2021, both mid and long-term cross-correlation coefficients were decreasing and
their dynamics started to demonstrate an upward trend.

Figure 6 demonstrates the performance of the cross-correlation Hurst exponent
calculated for S&P 500-BTC, HSI-BTC, and S&P 500-HSI.

The cross-correlation Hurst exponent decreased during the most noticeable crashes
in stock markets. The same we can see for the upward trend in stocks. Therefore, most
of the time BTC behaved asymmetrically. Also, for HSI and S&P 500 anti-persistent
behavior during critical phenomena of both indices is noticeable.

The dynamics of �α calculated for each pair is presented in Fig. 7.
The width of multifractality remains a reliable indicator for critical phenomena of all

indices. All of the figures demonstrate an increase in the width of multifractality during
crash phenomena. Especially that is noticeable during the COVID-19 crisis. However,
the degree of multifractality decreased for 2021, where visually BTC had noticeable
drops in price. This period in the BTC market will require further research.

In Fig. 8 we can see how all of the presented singularity exponents behave.
In this case, their dynamics demonstrates behavior similar to �α. At the same time,

we can observe that the dynamics ofαmin indicator do not represent synchronous behavior
along with other singularity exponents. For pair S&P 500-BTC it becomes higher for
last days, indicating a growth of multifractality. This will require additional research,
but the signal of this indicator may appear to be false.

Figure 9, where both L and R measures are presented, gives us an idea of how
dominance of small and large fluctuations varies.

The growth of L is the most noticeable during crash events such as coronavirus
pandemic, whereas R starts to increase for small critical events. It is worth noting that for
the pair S&P 500-HSI, the distribution of large and small fluctuations seems relatively
uniform. The dynamics of both indicators represent prospects for building effective
trading strategies (Fig. 10).

The long tail type �S indicator shows us how the difference between left and right
tails changes. Here we expect that with the crisis event, the indicator will decrease,
which will correspond to the dominance of the left tail, i.e., multifractal properties of
large events in the studied signal.

Figure 11 presents the dynamics of asymmetry coefficient A for all of the studied
pairs.

Its growth is noticeable during the largest drops in the studied period. At the beginning
for the pair S&P 500-BTC some of signals generated by A seem to be spurious as the
correlation between them could be negative. For other pairs, most of the time, our
indicator behaves in an expectable way (Fig. 12).

The height of f (α) demonstrates dynamics similar to �S. In this case we expect
higher probability of occurring large fluctuations as �f decreases, and for small fluc-
tuation we expect opposite behavior. This indicator is also presented to perspective
alternative for building reliable trading strategies.
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12 A. Bielinskyi et al.

Fig. 5. The comparative dynamics of S&P 500, HSI along with mid-term and long-term DCCA
cross-correlation coefficients calculated for the pairs: S&P 500-BTC (a), HSI-BTC (b), and S&P
500-HSI (c)
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The Analysis of Multifractal Cross-Correlation Connectedness 13

Fig. 6. The comparative dynamics of S&P 500, HSI, and hxy calculated for the pairs: S&P 500-
BTC (a), HSI-BTC (b), and S&P 500-HSI (c)
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14 A. Bielinskyi et al.

Fig. 7. The comparative dynamics of S&P 500, HSI, and �α calculated for the pairs: S&P 500-
BTC (a), HSI-BTC (b), and S&P 500-HSI (c)
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The Analysis of Multifractal Cross-Correlation Connectedness 15

Fig. 8. The comparative dynamics of S&P 500, HSI, and α0, αmin, αmean, αmax measures
calculated for the pairs: S&P 500-BTC (a), HSI-BTC (b), and S&P 500-HSI (c)
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16 A. Bielinskyi et al.

Fig. 9. The comparative dynamics of S&P 500, HSI, and L, R measures calculated for the pairs:
S&P 500-BTC (a), HSI-BTC (b), and S&P 500-HSI (c)
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The Analysis of Multifractal Cross-Correlation Connectedness 17

Fig. 10. The comparative dynamics of S&P 500, HSI, and �S measure calculated for the pairs:
S&P 500-BTC (a), HSI-BTC (b), and S&P 500-HSI (c)
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18 A. Bielinskyi et al.

Fig. 11. The comparative dynamics of S&P 500, HSI, and A measure calculated for the pairs:
S&P 500-BTC (a), HSI-BTC (b), and S&P 500-HSI (c)
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The Analysis of Multifractal Cross-Correlation Connectedness 19

Fig. 12. The comparative dynamics of S&P 500, HSI, and �f measure calculated for the pairs:
S&P 500-BTC (a), HSI-BTC (b), and S&P 500-HSI (c)
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20 A. Bielinskyi et al.

4 Discussion and Conclusions

In this study, we have analyzed multifractal cross-correlation characteristics of stock
and cryptocurrency markets using multifractal detrended cross-correlation analysis.
Using the MF-DCCA and sliding windows approach, we have constructed indicators
of cross-correlated behavior in S&P 500, HSI, and BTC. The combination of both
approaches gives us the possibility to present such measures as the DCCA correlation
coefficient ρDCCA for short- and long-term behavior, the generalized cross-correlation
Hurst exponent (hxy), the width of multifractal spectrum �α, the singularity exponents
α0, αmin, αmean, αmax, the widths of left (L) and right (R) tails of f (α), the long tail type
�S, the asymmetry coefficient A, and the height of the multifractal spectrum �f .

In the example of S&P 500, HSI, and BTC we have presented that most of the time the
dynamics of stock indices and developing digital market remained anti-persistent during
crisis events. Nevertheless, over the last years, their degree of cross-correlations started
to demonstrate synchronic behavior. The crashes of both markets are characterized by
multifractality, which implies long-term memory for the pair of markets. By analyzing
the cross-correlation coefficient ρDCCA versus time scale s, we have confirmed that
in short-term cross-correlations between stock and crypto markets are presented to be
weak. Even the mid-term cross-correlations between the Chinese market and the crypto
market remain insignificant. Both S&P 500 and HSI indices are highly correlated despite
some differences in their structure. Most of our indicators show that after the COVID-19
crisis, and the 2022 Russian invasion into Ukraine that has resulted in a collapse of food
supply, we may expect a higher degree of interconnection between the stock market and
the cryptocurrencies market.

Our empirical analysis shows further perspectives for constructing effective algorith-
mic strategies and forecasting models based on complex systems theory. In the future,
it would be interesting to consider other methods of classical multifractal analysis or its
cross-correlation modifications in combination with other methods of complex systems
theory [3, 4, 26, 29, 30, 42–45, 49].
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