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Abstract
The development and effective application of Fog Computing technologies require the most complex
tasks related to the management and processing of huge data sets, including the tasks of rational con-
struction of low-level networks that ensure the functioning of end devices within the IoT concept. The
article describes the use of graph theory methods to solve such problems. The proposed graph model
can provide the ability to determine the basic properties of systems, networks, and network devices
within the concept of Fog Computing, the optimal characteristics, and ways to maintain them in work-
ing condition. This paper shows how to plot graphs, and then customize the display to add labels or
highlighting to the graph nodes and edges of pseudo-random task graphs which can be used for evaluat-
ing Mobile Cloud, Fog and Edge computing systems. The graphs are described and visualized in Matlab
code. Each task has an amount of computational work to perform, expressed in Megacycles per second.
Each edge has an amount of data to transfer between tasks, expressed in kilobits or kilobytes of data.
The set can be used by researchers to evaluate cloud/fog/edge computing systems and computational
offloading algorithms. The task graphs can be used in single-user systems, where one mobile device
accesses a remote server, or in multi user systems, where many users access a remote server through a
wireless channel.
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1. Introduction

Nowadays, at the same time as the rapid development of industrial and built electronics will
lead to the fact that traditional equipment used in production processes and at home is more
than more provided intellectual functions and objects in the network that requires virtually

QuaInT 2021: Workshop on the Quantum Information Technologies, April 11, 2021, Zhytomyr, Ukraine
doors 2021: Edge Computing Workshop, April 11, 2021, Zhytomyr, Ukraine
" ryabko@meta.ua (A.V. Ryabko); ksuwazaika@gmail.com (O.V. Zaika); kyxap4yk1@ukr.net (R.P. Kukharchuk);
tetianavakaliuk@gmail.com (Tetiana A. Vakaliuk)
~ http://pfm.gnpu.edu.ua/index.php/struktura1/2015-04-01-14-50-26 (A.V. Ryabko);
http://pfm.gnpu.edu.ua/index.php/struktura1/2015-04-01-14-50-26 (O.V. Zaika);
http://pfm.gnpu.edu.ua/index.php/struktura1/2015-04-01-14-50-26 (R.P. Kukharchuk);
https://sites.google.com/view/neota/profile-vakaliuk-t (Tetiana A. Vakaliuk)
� 0000-0001-7728-6498 (A.V. Ryabko); 0000-0002-8479-9408 (O.V. Zaika); 0000-0002-7588-7406 (R.P. Kukharchuk);
0000-0001-6825-4697 (Tetiana A. Vakaliuk)

© 2021 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:ryabko@meta.ua
mailto:ksuwazaika@gmail.com
mailto:kyxap4yk1@ukr.net
mailto:tetianavakaliuk@gmail.com
http://pfm.gnpu.edu.ua/index.php/struktura1/2015-04-01-14-50-26
http://pfm.gnpu.edu.ua/index.php/struktura1/2015-04-01-14-50-26
http://pfm.gnpu.edu.ua/index.php/struktura1/2015-04-01-14-50-26
https://sites.google.com/view/neota/profile-vakaliuk-t
https://orcid.org/0000-0001-7728-6498
https://orcid.org/0000-0002-8479-9408
https://orcid.org/0000-0002-7588-7406
https://orcid.org/0000-0001-6825-4697
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


continuous data processing, growing and requiring computing power of this equipment. The
need to control and manage individual mechanisms and machines, as well as the environment,
transport flows, production, business, health and education, security, social processes has led
to the creation of a large number of devices that interact with people, central data messages
and between himself. For their effective functioning, it was necessary to create a global com-
munication system, the quality of the natural state by visiting the Internet, the need to solve
management and control problems to create a network concept focused on connecting devices
and received from the Internet of Things, IoT.

The term Internet of Things was first used in 1999 by Kevin Ashton, head of the Mas-
sachusetts Institute of Technology’s Auto-ID Research Center, who suggested that Procter &
Gamble use radio frequency tags (RFID) on products to improve supply chain management [1].
Later, this name became commonplace, although its meaning has now expanded significantly.

It should be noted that within the framework of the IoT concept, the basis for the effective
operation of both end devices with intelligent functions and the networks formed by them
is a real-time operation, reliability, and security, which can not always be provided using a
client-server interaction scheme, which is typical of the classic Internet and is based on cloud
technology and computing (Cloud Computing) [2].

The concept of Fog Computing is designed primarily to bring data processing and storage
closer to the devices that generate and use them. A modified concept of cloud technology
applicable to IoT, called Fog Computing (FC), was proposed by Cisco researchers. According to
the concept, the FC architecture is three-tiered. At the lowest level – the earth – are billions of
things, at the top – many cloud data centers that provide resources for applications that require
significant computing power and/or significant amounts of data. And, accordingly, between
them is Fog – tens of thousands of geographically distributed smaller control centers, sufficient
to solve local problems.

As mentioned above, the concept of Fog computing, in contrast to cloud computing, involves
the data processing to the end devices of networks – computers, mobile devices, sensors, and
more. It should be noted that now the term Edge Computing has become widespread, which
in essence is quite close to Fog Computing, as it also involves the implementation of key op-
erations to collect data processing outside the cloud. However, the key difference between
Fog Computing and Edge Computing is considered to be the degree of convergence of data
processing points to the edge devices of networks. If the concept of Fog involves sending data
generated by end devices for processing and/or storage in local processing centers (Fog Nodes),
then in the concept of Edge Computing the main tasks of data processing are solved directly
on end devices.

Considering the differences between Cloud Computing and Fog Computing, it should be
noted that from the authors’ point of view, despite the differences, the contrast between the
Fog/Edge Computing models and the Cloud Computing model is erroneous and should not be
considered as alternatives but complementary. The basic idea of the Fog Computing concept
is to ensure efficient, reliable, and secure interaction of a huge number of devices with each
other, with local data centers, and with cloud data centers.

Fog Computing is characterized by the use by users of service functions of resources located
on peripheral devices and in the distributed network. The data is located on the client nodes
where they should be processed or nearby. The main method of data collection and transmis-
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sion is wireless communication. The advantage of networks built according to the concept of
Fog Computing over cloud systems is to reduce the latency of the response to the collected
data by processing at the place of collection, and for real-time systems, this is one of the key
factors. Also, in most cases, the security of Fog Computing systems is higher than for Cloud
Computing systems. Another advantage of Fog Computing is the reduction in the amount of
data transmitted to the cloud, which reduces network bandwidth requirements, increases data
processing speed, and reduces decision delays. Thus, the use of Fog Computing allows you to
completely or partially solve some of the most common problems, including:

• large network delays,

• difficulties associated with the mobility of endpoints,

• reliability of communication,

• the high cost of bandwidth;

• unpredictable network congestion,

• large geographical distribution of systems and customers.

OpenFog Consortium, founded in 2015, has proposed a specification of the OpenFog ref-
erence architecture, a universal technology model for projects primarily in the field of the
IoT, mobile networks, and AI applications. The key members of the consortium are Cisco,
Intel, ARM, Dell, Microsoft. According to the proposed model, OpenFog-infrastructure is a
set of nodes (Fog Nodes) based on network smart devices that perform data processing, the
specification also contains descriptions of options for hierarchical node construction, system
deployment models, and examples of possible implementations.

The OpenFog reference architecture is based on the following eight technological principles
(criteria):

• security,

• scalability,

• openness,

• autonomy,

• RAS (reliability, availability, suitability for service);

• adaptability;

• hierarchical principle of construction of input elements;

• programmability.

According to Cisco developers, the concept of Fog Computing is best suited for working with
machine-to-machine (M2M) systems and devices that use a human-machine interface (HMI).
They distinguish three main groups of such devices:
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• Data acquisition devices are generated in series by different sensors with a frequency of
a few milliseconds to fractions of a second. Examples are devices of security systems and
control systems of industrial facilities. They are characterized by low latency require-
ments for data acquisition and high performance to calculate the required characteristics
in real-time.

• Systems responsible for data processing, including operating. Here the input data comes
with a frequency of a few seconds to a few minutes. Examples of such systems are
devices for visualization of physical processes, technological industrial systems. The
requirements for the latency of the collected data and their processing are not as high as
for the devices of the first group, but all data are processed in real-time.

• Devices for the collection and processing of historical data, collected at a frequency of
several minutes to several days. Example – visualization and reporting systems.

2. Theoretical background

Shanhe Yi, Zijiang Hao, Zhengrui Qin and Qun Li point to unresolved cloud computing is-
sues such as unreliability, latency, lack of mobility support, and location awareness [3]. Fog
computing can solve these problems by providing resources and services to end-users at the
network boundary, while cloud computing is more about providing resources distributed on
the core network. Fog provides IoT data processing and storage locally on IoT devices, instead
of sending it to the cloud [4].

Case studies Weisong Shi and Schahram Dustdar [5], Weisong Shi, Jie Cao, Quan Zhang,
Youhuizi Li and Lanyu Xu [5], Nasir Abbas, Yan Zhang, Amir Taherkordi and Tor Skeie [6], Ma-
hadev Satyanarayanan [7] provide a detailed description, definition, and capabilities of Edge-
Computing, from cloud technology unloading to smart home and city, mobile networks.

Luis Miguel Vaquero and Luis Rodero-Merino [8] define Fog, considering a variety of tech-
nologies such as cloud, sensor networks, peer-to-peer networks, network virtualization func-
tions, or configuration management techniques [8]. Redowan Mahmud, Ramamohanarao Ko-
tagiri and Rajkumar Buyya note that Fog computing is located closer to IoT devices/sensors and
expands the capabilities of cloud-based computing, storage, and networking technologies [9].
Ivan Stojmenovic, Sheng Wen, Xinyi Huang and Hao Luan point to Smart Grid technologies,
smart traffic lights, software-defined networks [10].

Flavio G. Bonomi, Rodolfo A. Milito, Jiang Zhu and Sateesh K. Addepalli indicate the main
characteristics of Fog: a) low latency and location awareness; b) wide geographical distribution;
c) mobility; d) a very large number of nodes; e) the predominant role of wireless access; f) the
strong presence of streaming and real-time programs; g) heterogeneity [11]. These features
make Fog an appropriate platform for several critical IoT services and applications, namely,
automotive, smart grids, smart cities, and wireless sensors and network devices (WSANs) in
general.

The results of studies by Subhadeep Sarkar and Sudip Misra show that for the scenario where
25% of IoT applications will run with low real-time latency, the average energy consumption
for Fog calculations will be 40.48% lower, than in the usual model of cloud computing [12].
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Expanding the concepts of Fog Computing is the driving force behind the introduction of
Industry 4.0. The development of algorithms and optimization methods is complicated by the
complexity of such systems and the lack of real data on Fog systems, which leads to the use of
algorithms that are not adapted to real scenarios. Graph-based system parameters allow you
to scale and design more realistic test scenarios for future optimization attempts, as well as to
determine the features of Fog systems compared to other types of networks [13].

Graph theory is used to construct a load balancing algorithm for Fog network computations
[14] based on a dynamic graph distribution [15] that the Fog Cloud Atomization computing
system can flexibly build a system network, and the dynamic load balancing mechanism can
efficiently configure system resources as well as reduce the consumption of node migration
caused by system changes.

Some authors propose a Fog network caching scheme based on the Steiner tree, in which Fog
servers, by caching resources, first create a Steiner tree in graphs to minimize the total path
weight (or cost) so that the cost of resource caching with this tree can be minimized [3, 16].

Xu Chen and Junshan Zhang propose a hybrid HyFog system for unloading tasks in Fog
Computing based on a three-level graph for efficient distribution of tasks between devices.
The problem of minimizing the total cost of the task is reformulated as the problem of the
minimum weight ratio in the constructed three-level graph, which can be effectively solved
using the Blossom Edmonds algorithm [17].

Dmitry Korzun, Aleksey Varfolomeyev, Anton Shabaev and Vladimir Kuznetsov consider
two emerging IoT-enabled paradigms: Edge-centric Computing and Fog Computing. They are
elaborating their potential for development of smart applications with focus on the dependabil-
ity and using a mobile assistant for e-tourism as a reference application. They analyze possible
concept elements for smart application development and provide recommendations in respect
to the dependability [18].

Isaac Lera, Carlos Guerrero and Carlos Juiz propose a fog computing simulator for analyzing
the design and deployment of applications through customized and dynamical strategies. They
model the relationships among deployed applications, network connections, and infrastructure
characteristics through complex network theory, enabling the integration of topological mea-
sures in dynamic and customizable strategies, such as the placement of application modules,
workload location, and path routing and scheduling of services [19].

Ted H. Szymanski presents describes 300 task graphs which can be used for evaluating mobile
cloud, fog and edge computing systems.The task graphs are organized as 3 sets of 100 graphs.
Each graph in the first set has the same topology, with 𝑁 = 9 tasks and 6 offloadable tasks.
Each graph in the second set has the same topology, with 𝑁 = 29 tasks and 20 offloadable
tasks. Each graph in the third set has the same topology, with 𝑁 = 23 tasks and 19 offloadable
tasks. Users can also change the number of offloadable components per task graph, in which
case the total number of task graphs specified in this paper exceeds 5,000, providing a good
basis for the evaluating cloud computing systems [20].
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3. Research methods

When modeling the operation of both individual elements and the system, designed and/or
built on the concept of fog computing as a whole, for example, to assess efficiency, performance,
bandwidth, performance, equipment reliability, the delay time for certain types of service, data,
software, the system should be presented in the form of several interconnected levels:

• equipment,

• interfaces,

• transport system (network),

• operating systems (OS),

• data,

• services,

• applications.

Such a representation of the object of modeling allows you to use the apparatus of graph
theory.

Figure 1 in the form of an oriented graph 𝐺 = (𝑍, 𝐿) presents a multilevel graph model of
the system built according to the concept of Fog Computing. The set of vertices of the graph
𝑍𝐸𝑞𝑢𝑖𝑝 , 𝑍𝐶𝑜𝑛𝐷𝑒𝑣 , ..., 𝑍𝐶𝑜𝑚𝐷𝑒𝑣 , ...; 𝑍𝐼 𝑛𝑡𝑒𝑟𝑓 , 𝑍𝐻𝑀𝐼 , ..., 𝑍𝑀2𝑀 , ... .; 𝑍𝑇𝑆 , 𝑍𝑁𝑒𝑡𝐷𝑒𝑣 , ..., 𝑍𝐿, ... ; 𝑍𝑜𝑠 , 𝑍𝑜𝑠1,
..., 𝑍𝑜𝑠𝑛, 𝑍𝐷𝑎𝑡𝑎, 𝑍𝑂𝐼 , ..., 𝑍𝐻𝐷 , ..., 𝑍𝐵𝐷 , ...; 𝑍𝑆 , 𝑍𝑆1, ..., 𝑍𝑆𝑚; 𝑍𝐴𝑝𝑝 , 𝑍𝐴𝑝𝑝1, ..., 𝑍𝐴𝑝𝑝𝑘 are tasks that are
solved at each specific level.

The set of arcs contains: 𝑋𝑝𝑟 – the set of parameters needed to solve these problems and
the set of information links – 𝐻 . The set of parameters 𝑋𝑝𝑟 consists of 𝐻 𝑖𝑛

𝑝𝑟 – input and 𝐻 𝑜𝑢𝑡
𝑝𝑟 –

output parameters.

𝑋𝑝𝑟 = {𝐻 𝑖𝑛
𝑝𝑟 , 𝐻 𝑜𝑢𝑡

𝑝𝑟 }
with 𝐿 = 𝑋𝑝𝑟 ⋃𝐻 and 𝑋𝑝𝑟 ⋂𝐻 = ∅.

It should be noted that the output parameters of some tasks (vertices) may be input for others.
Information connections are converted into a Boolean matrix 𝑛∙𝑛:

𝐻 = ‖ℎ𝑔𝑙 ‖𝑛𝑥𝑛.
The matrix element ℎ𝑔𝑙 characterizes the presence of information connections of problems

𝑔 and 𝑙:

ℎ𝑔𝑙 =
{
1 if the tasks are related by parameters,

0 otherwise.

The solution of any problem can be represented as
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𝑍𝑖 ∶ {𝑋 𝑖𝑛
𝑝𝑟 } ⇒ 𝑍 𝑜𝑢𝑡

𝑝𝑟 .
It should be noted that there are many mathematical models for solving the problems that

correspond to the vertices of the graph 𝐺 = (𝑍, 𝐿), in the future, they are used to estimate
the parameters and characteristics of Fog Computing elements. Each vertex of the graph cor-
responds to one or more nodes, and the output parameters of some nodes can be input to
others. Michaela Iorga, Larry Feldman, Robert Barton, Michael J. Martin, Nedim Goren and
Charif Mahmoudi note that Fog nodes are either physical components (e.g., gateways, switches,
routers, servers, etc.) or virtual components (e.g., virtual switches, virtual machines, clouds,
etc.) that are closely related to intelligent endpoints, devices or access networks, and provide
computing resources for these devices [21].

Each parameter for solving problems is characterized by a vector of characteristics of pa-
rameters, which includes: units of measurement of the parameter; the vertex in which this
parameter is the source; the vertex in which the parameter is input, the level number, and
other individual characteristics. The units of measurement of parameters are determined by
the International System of Units (SI) and by the semantics of specific modeling tasks. In this
case, all parameters should be divided into two groups: 1) parameters corresponding to the SI
system; 2) all other parameters.

For the same parameters, the units of measurement may be different; therefore, it is neces-
sary to perform parameter matching. As mentioned above, the OpenFog reference architecture
is based on the following eight criteria:

𝐾 = {𝐾𝑢
1 , ..., 𝐾𝑢

8 },
where 𝐾 is a compound criterion; 𝑢 is the level number (𝑢 = 1, ..., 7); 𝐾𝑢

𝑖 – criterion of a specific
level, for example, security at the level of services.

This method can be used in this study, because using the graph 𝐺 = (𝑍, 𝐿), it is possible
to integrate models for calculating and evaluating various parameters depending on specific
tasks, to carry out multivariate calculations, and to effectively evaluate almost all parameters
and characteristics of Fog Computing elements. The graph model clearly shows the mutual
influence and interrelation of tasks and parameters, and modeling can be started with any task
that corresponds to the top of the graph (one or more).

4. Results

Let us dwell in more detail on the results of modeling the graph of a system designed and/or
built on the concept of Fog Computing (figure 1).

1st level – equipment. The vertices of the graph 𝑍𝐸𝑞𝑢𝑖𝑝 , 𝑍𝐶𝑜𝑛𝐷𝑒𝑣 , ..., 𝑍𝐶𝑜𝑚𝐷𝑒𝑣 , ... correspond
to this level. The vertex of 𝑍𝐸𝑞𝑢𝑖𝑝 defines all problems which are solved at this level; vertices of
𝑍𝐶𝑜𝑛𝐷𝑒𝑣 , ... – (connecting devices) tasks that are solved at the level of a wide range of devices
connected to the network; vertices 𝑍𝐶𝑜𝑚𝐷𝑒𝑣 , ... – tasks for devices that allow you to perform the
necessary calculations. An example of the tasks that are solved at this level is the calculation
of the reliability and performance of devices.
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Figure 1: Graph model of the system, which is implemented according to the concept of Fog Comput-
ing

2nd level – interfaces. As mentioned above, Fog calculations are best suited for working
with inter-machine interaction systems – M2M, and devices that use a human-machine in-
terface – HMI. The interface level corresponds to the vertices of the graph 𝑍𝐼 𝑛𝑡𝑒𝑟𝑓 , 𝑍𝐻𝑀𝐼 , ...,
𝑍𝑀2𝑀 , .... The vertex of the 𝑍𝐼 𝑛𝑡𝑒𝑟𝑓 describes the tasks specific to this level; vertices 𝑍𝐻𝑀𝐼 ,
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..., 𝑍𝑀2𝑀 , ... – define tasks for systems with inter-machine and human-machine interface, re-
spectively. M2M – machine-machine interaction (Machine-to-Machine, Mobile-to-Machine,
Machine-to-Mobile) – the name of the technology (sum of technologies), which allows data
transfer between different devices, and it can be groups of devices, such as public transport.
Work on M2M is coordinated by the following organizations: the Eclipse Foundation, the Focus
Groupon Machine-to-Machine, a member of the International Telecommunication Union, and
the TR-50 M2M Intelligent Devices Engineering Committee.

Types of M2M: stationary M2M, such as process control, payment terminals, meters, etc.,
and mobile M2M, for example, for fleet management, where M2M is used as an on-board device
for monitoring, diagnostics, navigation, security, and mobile communications. M2M applica-
tions include access systems, premises security systems, security systems, remote control and
management of equipment, transport and monitoring of moving objects, vending machines,
payment terminals, healthcare, etc. HMI – human-machine interface – a concept that encom-
passes engineering solutions that provide human interaction with controlled objects (machines,
systems, devices).

The HMI can be a computer, standard software, a simple remote control with a set of LED
indicators, and so on. Modern computers are focused on streaming architecture, the implemen-
tation of intelligent human-machine interface, which provides not only a systematic solution
but also the ability of the machine to logical thinking and self-learning, to associative informa-
tion processing and drawing logical conclusions. The requirements that different users impose
on the HMI vary widely. The implementation of an intelligent human-machine interface is
associated with the ability to solve problems of recognition and understanding of natural lan-
guage, for this, there are recognition systems (language, handwritten texts, images). Creating
a user-friendly and efficient human-machine interface is an urgent task. Also among the tasks
of the interface level can be distinguished, for example, the choice of standard interface buses;
reliability assessment at the interface level, and others.

3rd level – transport system (network). The transport system is used to transmit information
and contains nodes of the Fog infrastructure – switches, routers, etc. The vertex 𝑍𝑇𝑆 of the
graph 𝐺 = (𝑍, 𝐿) defines the general tasks characteristic of the 3rd level, and the vertices
𝑍𝑁𝑒𝑡𝐷𝑒𝑣 , ... – describe the tasks that are solved at the level of network devices; vertices 𝑍𝐿, ...,
𝑍𝐿𝑞 , ... – tasks that are solved at the level of communication channels. As the tasks are solved at
this level it is possible to result in the following – a choice of a communication channel; channel
bandwidth estimation; calculation of the delay factor of network equipment; estimation of
message delay and many others.

4th level – operating systems (OS). Here you should consider the presence of different types
of operating systems (UNIX-like OS, Windows, macOS, etc.). The vertex 𝑍𝑜𝑠 of the graph de-
scribes the general tasks characteristic of the OS level.

Vertices 𝑍𝑜𝑠1, ..., 𝑍𝑜𝑠𝑛 are tasks that are solved for each specific operating system, for example:

• calculation of the coefficient of relative losses of OS performance for a multiprocessor
system,

• determining the average processing time of the OS request,

• estimation of the average time spent on access to external memory and analysis of the
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intensity of OS requests to external memory devices,

• assessment of the reaction time of the OS in solving specific problems,

• an estimate of the average time required to transmit the OS request,

• estimate the time of access to RAM,

• optimization of the core structure of open OS by the criterion of information security,

• estimation of time of detection of errors in processes,

• calculation of the probability of skipping the controlled signal (quantitative characteris-
tics for the tasks of monitoring the integrity of OS files) and many others.

5th level – data. The vertices𝑍𝐷𝑎𝑡𝑎, 𝑍𝑂𝐼 , ...., 𝑍𝐻𝐷 , ..., 𝑍𝐵𝐷 , ... of the graph𝐺 = (𝑍, 𝐿) correspond
to this level. The 𝑍𝐷𝑎𝑡𝑎 vertex describes general tasks, 𝑍𝑂𝐼 , ...., 𝑍𝐻𝐷 , ..., 𝑍𝐵𝐷 , ... vertices – tasks
specific to operational information (real-time analysis), historical data (transaction analysis),
and long-term storage (BigData analysis).

Examples of tasks to be solved at this level:

• prognostic calculation of the speed of new data generation,

• optimization of file placement and processing of requests to the database,

• estimation of data volume,

• data compression,

• distributed calculations when planning requests to the database,

• assessment of the integrity of information at the level of links and other tasks.

6th level – services. These can be various services, such as online services (like Uber), stream-
ing services (like Netflix, Amazon Prime, Hulu, and Crunchyroll), etc.

The level of services corresponds to the vertices 𝑍𝑆 , 𝑍𝑆1, ..., 𝑍𝑆𝑚 graph model. Vertex 𝑍𝑆
defines general tasks for service level, vertices 𝑍𝑆1, ..., 𝑍𝑆𝑚 – tasks for different types of service.

Examples of tasks:

• calculation of productivity for the 6th level,

• assessment of service quality in virtual VPN channels,

• optimization of system services by network resources,

• assessment of the security of transmission of confidential information in broadcast com-
munication channels,

• maximum support for different types of 6th level traffic, etc.
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7th level – applications. Applications are research software, computer-aided design systems,
games, applications for artists, geographically distributed applications for pipeline monitoring,
smart devices in the car, SmartGrid, traffic light control systems, etc.

The vertices 𝑍𝐴𝑝𝑝 , 𝑍𝐴𝑝𝑝1, ..., 𝑍𝐴𝑝𝑝𝑘 of the graph 𝐺 = (𝑍, 𝐿) correspond to this level. Vertex
𝑍𝐴𝑝𝑝 describes the general tasks of the application level, the vertices of 𝑍𝐴𝑝𝑝1, ..., 𝑍𝐴𝑝𝑝𝑘 – tasks
for different types of applications. These can be applications installed on computers, tablets,
smartphones of users.

Some examples of tasks:

• calculation of maximum productivity for the 7th level,

• distribution of application tasks between users according to the criterion of weighted
average route length,

• prognostic estimate of the conditional average service time of the application required
to perform the task lasting in 𝑛𝑡 period,

• estimation of the average time of the decision of applied problems,

• calculation of exchange time with external memory in the process of solving applied
corporate tasks,

• prognostic calculation of the time required for data processing in the application system,

• calculation of the average service time of the application for algorithms of non-priority
service disciplines,

• scalability for the 7th level.

The main properties of the multilevel graph model of Fog Computing system are:

1. integration – the ability to solve individual (partial) problems depending on the specific
situation,

2. universality,
3. adequacy,
4. accuracy,
5. efficiency,
6. property of development – the model is created and functions taking into account addi-

tions, improvements, and updates.

The requirements of a high degree of universality, accuracy, adequacy on the one hand, and
its high efficiency, on the other hand, are contradictory.

In the process of analyzing the graph model of the system, which is implemented by the
concept of Fog Computing, the graph 𝐺 = (𝑍, 𝐿) is decomposed into typical subgraphs (the
necessary subgraphs are allocated to save time and computing resources), the parameters of
the corresponding vertices are determined by set of connections between vertices (tasks). Then
there is a selection of appropriate models (formulas) to calculate the necessary parameters for
solving specific problems. Next, you need to analyze the entire graph model. Using graph
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Figure 2: Graph with the width of the edges, which is proportional to their weight

𝐺 = (𝑍, 𝐿) it is possible to integrate models for calculation and estimation of various parame-
ters depending on concrete tasks, to carry out various calculations, to estimate practically all
parameters and characteristics of Fog Computing system elements. The graph model clearly
shows the mutual influence and relationship of tasks and parameters, and modeling can begin
with any problem that corresponds to the vertex of the graph (one or more).

Fog Computing network simulations were performed in Matlab. Since the 2015 release, Mat-
lab has been able to work with graphs using the 𝐺 = 𝑔𝑟𝑎𝑝ℎ() function. After you create a graph
that simulates a network, you can get information about the graph by using object functions to
perform object queries. For example, you can add or remove nodes or edges, define the shortest
path between two nodes, or find a specific graph node:

G = graph([1 1], [2 3]);
e = G.Edges
G = addedge(G,2,3)
G = addnode(G,4)
plot(G)

The next step in describing the relationships between objects using graphs is to give the
edges certain symbolic values, qualitative characteristics, called weights. In the simplest cases,
this may be the ordinal numbering of the edges, which is checked by the order of their consid-
eration (priority or hierarchy). Rib weight can mean length (message paths), bandwidth (com-
munication lines), load. Weight can be attributed not only to the ribs but also to the vertices.
For example, the vertices that correspond to the Fog nodes of the network can characterize the
number, bandwidth, and so on. Next, a graph is constructed, indicating the weight of the edges
and making the width of the edges proportional to their weight (figure 2).

We used a set of pseudo-random task graphs which can be used for evaluating Mobile Cloud,
Fog and Edge Computing systems. The pseudo-random task graphs are based upon graphs that
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Figure 3: Three task graphs each with N = 9 nodes and 6 offloadable tasks. Tasks 1,6 and 9 execute
locally. Edge weights are in Kilobits

have previously developed by Ted H. Szymanski [20]. Researchers can download these 300 task
graphs and analyse their own configurations of mobile cloud, fog and edge computing systems
with different mobile device parameters and cloud/fog/edge server parameters, but the code
does not provide the ability to visualize graphs and properties of nodes and edges.

For example, the first set of graphs is based upon a task graph presented in [20]. Reference
[20] provided the 3 task graphs shown in figure 3, and it provided the optimal energy for each
graph (under certain assumptions). In figure 3, the task graphs consists of 9 tasks and 10 edges.
Tasks 1, 6 and 9 must execute locally, and the remaining tasks can execute locally or remotely.
The task complexities are expressed in Mega-cycles per task, and the edges are annotated with
the data size expressed in kilobits. The task graph in Fig. 3 contains only in one variable, where
the complexity of task 8 changes from 3 to 20 Mega-cycles.

Graph plots are the primary way to visualize graphs and networks created using the graph
and digraph functions. After you create a GraphPlot object, you can modify aspects of the plot
by changing its property values. This is particularly useful for modifying the display of the
graph nodes or edges. GraphPlot properties control the appearance and behavior of plotted
graphs. By changing property values, you can modify aspects of the graph display. Use dot
notation to refer to a particular object and property. Let’s plot a graph by marking the edges
with their weights and making the widths of the edges proportional to their weights. Use a
scaled version of the edge weights to define the width of each edge so that the widest line has
a width of 5. This example shows how to plot graphs:

EDGE_src(1,1:10)=[1,1,2,2,3,4,5,6,7,8,];
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EDGE_dst(1,1:10)=[2,3,4,5,6,8,7,7,8,9,];
EDGE_bits(1,1:10)=[200,660,780,590,710,80,270,620,100,500,]
G=graph(EDGE_src,EDGE_dst,EDGE_bits)

G =
graph with properties:
Edges: [10x2 table]
Nodes: [9x0 table]
>> LWidths = 5*G.Edges.Weight/max(G.Edges.Weight);
plot(G,’EdgeLabel’,G.Edges.Weight,’LineWidth’,LWidths)

The second task graph is an extended version of the previous task graph, and the seed graph
is shown in figure 3. Three instances of the task graph from set 1 (in figure 2) are placed in
parallel, between the entry node 1 and exit node 29. The seed graph has 29 nodes and 36 edges.
Nodes 1, 29 and 7 other randomly selected nodes execute locally. Each task graph in set 2 thus
has 20 offloadable tasks. This example shows how to plot graphs:

>>EDGE_src(1,13:24)=[1,11,11,12,12,13,14,15,16,17,18,19,];
EDGE_dst(1,13:24)=[11,12,13,14,15,16,18,17,17,18,19,29,];
EDGE_bits(1,25:36)=[200,200,660,780,590,710,80,270,620,100,500,300,];
G=graph(EDGE_src,EDGE_dst,EDGE_bits)

G=
Graph with properties:
Edges: [36x2table]
Nodes: [29x0table]
>>LWidths=5*G.Edges.Weight/max(G.Edges.Weight);
plot(G,’EdgeLabel’,G.Edges.Weight,’LineWidth’,LWidths)

The first task graph in set 2 is identical to the one shown in figure 4.
The practical application of the model can, for example, help mobile devices overcome re-

source constraints by unloading computing tasks on cloud servers. The task of the cloud is to
minimize the time of data transfer and execution of tasks to the user, whose location changes
due to the mobility and power consumption of the mobile device.

Ensuring satisfactory computational performance is particularly difficult in Fog Computing.
The graph model of calculations will allow bringing effectively computing power Fog to the
mobile user. The graph model consists of remote cloud nodes and local cloud nodes that are
connected to the wireless access infrastructure. Evaluating the effectiveness of our method us-
ing experimental modeling in Matlab shows good results, which show that this method allows
you to calculate the ability to reduce task execution time and power consumption of mobile
devices.
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Figure 4: Task graph with N = 29 nodes and 20 offloadable tasks based upon previous figure

5. Conclusions

The developed graph model can be a very versatile tool for optimizing existing networks and
for implementing new systems and networks created by the concept of Fog Computing, and,
above all, focused on the IoT. The IoT and Fog computing is just entering everyday life, and
the model provides the ability to calculate, perform a prognostic assessment, optimize the nec-
essary characteristics of the entire system and individual elements, identify bottlenecks and
redundancy at the design stage taking into account OpenFog reference architecture, criteria
(technological principles) and types of data processing systems. The proposed graph model
can provide the ability to determine the basic properties of systems, networks, and network
devices within the concept of Fog Computing, the optimal characteristics, and ways to main-
tain them in working condition. A promising task is to create an algorithm for calculating the
shortest path between nodes when dynamically changing the weight of the edges of the graph
(for example, when changing the location of a mobile device) to solve practical problems of
unloading mobile resources.

This paper shows how to plot graphs, and then customize the display to add labels or high-
lighting to the graph nodes and edges of pseudo-random task graphs which can be used for
evaluating Mobile Cloud, Fog and Edge computing systems. The graphs are described and
visualized in Matlab code.
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We plan to develop a set of use-case scenarios that we analyze to determine the graph based
parameters of the system that allows us to scale and generate a more realistic testing scenario
for future optimization attempts as well as determine the nature of fog systems in comparison
to other networks types.
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